• Title/Summary/Keyword: Landfill gas

Search Result 237, Processing Time 0.027 seconds

Gas Transmit Characteristic of Waste Recycling a Large Landfill Cover (폐기물 재활용 대형복토재의 가스투과 특성)

  • Jung, Ha-Ik;Song, Bong-Joon;Kim, Sang-Keun;Kang, Suk-Joo;Lee, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1396-1399
    • /
    • 2005
  • Gas permeability of the solidified sewage sludge needs to be characterized in order to use as a large-scale landfill cover material. Four different types of the samples were prepared for gas permeability experiments: (1) granite soil, (2) dried sewage sludge, (3) solidified sewage mixed with slag and (4) solidified sewage mixed with granite soils. The experimental instrumentation and measurement devices were newly designed and created to effectively evaluate gas permeability of the samples.

  • PDF

Biofiltration of Odorous Compounds in Municipal Solid Waste Landfill Gases (생물탈취상에 의한 도시폐기물 매립지가스내 악취물질의 처리)

  • 남궁완;박준석;황의영;이노섭;인병훈;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • Biofiltration is an attractive technique for elimination of VOCs and odorous compounds from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. The objective of this study was to estimate the removal characteristics of Odorous Compounds including $H_2$S, $NH_3$End BTEX in MSW landfill gases. This Study was conducted at Nanjido landfill site. A compost from the Nanjido composting facility was used as a filling material for biofiltration. Extracted landfill gases were injected into biofilter reactors after mixing with air. Experiments were performed in an incubator being set to $20^{\circ}C$ $H_2$S concentrations were monitored at the depths of 25, 50, 75 and 100cm from the bottom Of the biofilter reactors. 98% of $H_2$S was removed at the filling depth of only 25cm. NH$_3$removal rate was about 85%. Toluene removal rate was the highest among BTEX. Significant pH drop of a filling material was not observed during the biofilter operation of 1 month. Without mixing the landfill gas stream with all, the removal rate of $H_2$S decreased down to 30%.

  • PDF

Calculation and Projection of Greenhouse Gas Emissions from La Chureca Landfill in Managua, Nicaragua (니카라과 마나과시 La Chureca 매립장 온실가스 발생량 산정 및 예측)

  • Kim, Choong Gon;Lee, Hyun Jun;Kang, Ho Jeung;Kim, Jae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.131-139
    • /
    • 2022
  • The aim of this study was to assess the feasibility of a landfill project to reduce greenhouse gas (GHG) from La Chureca Landfill in Managua, Nicaragua ("Project"). The feasibility study involved surveying the status and composition of waste on its way in to the landfill and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model based on the survey results indicated the period 2006 to 2043 would see mean yearly GHG emissions of 290,147 ton-CO2/year with model certainty not considered, and 217,610 ton-CO2/year with model certainty considered. Thus, the result exceeded the corresponding median and mean values of other CDM projects implemented in Central America, even after model uncertainty was considered together with the conservative estimation of carbon capture efficiency. The similar result was produced even with an analysis of sensitivity to error factors. All the findings of the study are expected to be applicable as basic data for deciding about whether & how to proceed with the Project.

Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas (미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산)

  • Khim, Young-Min;Song, Hyo-Soon;Ahn, Hyoseong;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

Effects of Hydrogen Sulfide and Siloxane on Landfill Gas Utility Facilities

  • Nam, Sang-Chul;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.159-164
    • /
    • 2011
  • This study examined the emission characteristics of impure gas-like hydrogen sulfide and siloxane contained in landfill gas (LFG) and investigated the effect of impure gas on LFG utility facilities. As a result of an LFG component analysis from eight landfills in the same environment, hydrogen sulfide averaged 436 ppmv (22-1,211 ppmv), and the concentration of total siloxane averaged 7.95 mg/$m^3$ (1.85-21.18 mg/$m^3$). In case of siloxane concentration by component, the ratio of D4 (average 3.79 mg/$m^3$) and D5 (average 2.64 mg/$m^3$) indicated the highest level. Different kinds of scales were found on the gas air heater (GAH) and inside the boiler. The major component of scale from the GAH was $Fe_2O_3$ of 38.5%, and it was caused by hydrogen sulfide. Other scale was found on the bottom and the wall of the boiler and the scale was silicon dioxide of 92.8% and 98.9%. The silicon dioxide scale was caused by combustion of siloxane. As a result of a scanning electron microscopy analysis, the structure of the silicon dioxide scale from the boiler was an immediate filamentous type. Consequently, as silicon dioxide scale is bulky, such bad effects were worsening, as an interruption in heat conduction, increase in fuel consumption, damage to the boiler by overheating, and clogged emission pipeline could occur in LFG utility facilities.

Development and Application of a Landfill Gas Migration Model (폐기물 매립지에서의 가스 거동에 관한 모델 개발과 적용)

  • Park, Yu-Chul;Lee, Kang-Kun;Park, Chul-Hwi;Kim, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.325-333
    • /
    • 1996
  • numerical model is developed to estimate gas flow in the landfill site. Darcy's law, the mass conservation law, and the ideal gas state equation are combined to compose the governing equation for the steady-state and transient-state gas flows. The finite element method (FEM) is used as the numerical solution scheme. Two-dimensional radial symmetric triangular ring element is used to discretize the simulation domain. The steady state model developed in this study is compared with AIRFLOW that is a commercial model developed by Hydrologic Inc. Mass balance test is performed on the transient gas flow simulation. The developed model is applied to analyze the gas extraction experiment performed by Daewoo Institute of Construction Technology at the Nanjido landfill in 1993. The developed model was registered at Korea Computer Program Protection Foundation.

  • PDF

A Study on Landfill Gases in Old Open Dumping Landfill Site (단순 매립지내의 매립가스에 관한 연구)

  • Yeon, Ik-Jun;Ju, So-Young;Yoon, Chol;Yi, Myoung-Sun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • The purposes of this study are the analysis of landfill gases(LFGs) in old open dumping landfill site near middle city and offer the useful data for reusing the landfill site as the residental, commercial and other purposes. The concentration of $CO_2$ and $CH_4$ were lower as 8.28 vol% and 1,247 ppm but the concentrations of $NH_3$ and $H_2S$ were 7 times and 12 times higher than TLV-TWA standard. The concentration of $CH_4$ and other gases were lower than the ACGIH criterion. As the result of the environmental assessment on the open dumping landfill, if appears that this landfill is maturation phase and the formation of LFGs is reduced. If the treatment facility of $NH_3$ and $H_2S$ gases is prepared, it can be safely used as this landfill site.

  • PDF

Developments of Greenhouse Gas Generation Models and Estimation Method of Their Parameters for Solid Waste Landfills (폐기물매립지에서의 온실가스 발생량 예측 모델 및 변수 산정방법 개발)

  • Park, Jin-Kyu;Kang, Jeong-Hee;Ban, Jong-Ki;Lee, Nam-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.399-406
    • /
    • 2012
  • The objective of this research is to develop greenhouse gas generation models and estimation method of their parameters for solid waste landfills. Two models obtained by differentiating the Modified Gompertz and Logistic models were employed to evaluate two parameters of a first-order decay model, methane generation potential ($L_0$) and methane generation rate constant (k). The parameters were determined by the statistical comparison of predicted gas generation rate data using the two models and actual landfill gas collection data. The values of r-square obtained from regression analysis between two data showed that one model by differentiating the Modified Gompetz was 0.92 and the other model by differentiating the Logistic was 0.94. From this result, the estimation methods showed that $L_0$ and k values can be determined by regression analysis if landfill gas collection data are available. Also, new models based on two models obtained by differentiating the Modified Gompertz and Logistic models were developed to predict greenhouse gas generation from solid waste landfills that actual landfill generation data could not be available. They showed better prediction than LandGEM model. Frequency distribution of the ratio of Qcs (LFG collection system) to Q (prediction value) was used to evaluate the accuracy of the models. The new models showed higher accuracy than LandGEM model. Thus, it is concluded that the models developed in this research are suitable for the prediction of greenhouse gas generation from solid waste landfills.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.