• Title/Summary/Keyword: Land-use map

Search Result 515, Processing Time 0.025 seconds

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

A study on urban heat islands over the metropolitan Seoul area, using satellite images (원격탐사기법에 의한 도시열섬 연구)

  • ;Lee, Hyoun-Young
    • Journal of the Korean Geographical Society
    • /
    • v.40
    • /
    • pp.1-13
    • /
    • 1989
  • The brightness temperature from NOAA AVHRR CH 4 images was examined for the metropolitan Seoul area, the capital city of Korea, to detect the characteristics of the urban heat island for this study. Surface data from 21 meteorological stations were compared with the brightness temperatures Through computer enhancement techniques, more than 20 heat islands could be recognized in South Korea, with 1 km spatii resolution at a scale of 1: 200, 00O(Fig. 3, 4 and 6). The result of the analysis of AVHRR CH 4 images over the metropolitan Seoul area can be summerized as follows (1) The pattern of brightness temperature distribution in the metropolitan Seoul area shows a relatively strong temperature contrast between urban and rural areas. There is some indication of the warm brightness temperature zone characterrizing built-up area including CBD, densely populated residential district and industrial zone. The cool brightness temperature is asociaed with the major hills such as Bukhan-san, Nam-san and Kwanak-san or with the major water bodies such as Han-gang, and reservoirs. Although the influence of the river and reservoirs is obvious in the brightness temperauture, that of small-scaled land use features such as parks in the cities is not features such as parks in the cities is not apperent. (2) One can find a linerar relationshop between the brightenss temperature and air temperature for 10 major cities, where the difference between two variables is larger in big cities. Though the coefficient value is 0.82, one can estimate that factors of the heat islands can not be explained only by the size of the cities. The magnitude of the horizontal brightness temperature differences between urban and rural area is found to be greater than that of horizontal air temperature difference in Korea. (3) Also one can find the high heat island intensity in some smaller cities such as Changwon(won(Tu-r=9.0$^{\circ}$C) and Po-hang(Tu-r==7.1$^{\circ}$~)T. he industrial location quotient of Chang-won is the second in the country and Po-hang the third. (4) A comparision of the enhanced thermal infrared imageries in 1986 and 1989, with the map at a scale of 1:200, 000 for the meotropolitan Seoul area showes the extent of possible urbanization changes. In the last three years, the heat islands have been extended in area. zone characterrizing built-up area including (5) Although the overall data base is small, the data in Fig. 3 suggest that brightness tempeautre could ge utilized for the study on the heat island characteristics. Satellite observations are required to study and monitor the impact of urban heat island on the climate and environment on global scale. This type of remote sensing provides a meams of monitoring the growth of urban and suburban aeas and its impact on the environment.

  • PDF

Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps (수치 정밀토양도를 이용한 전국 토양 유실량의 평가 및 침식 위험지역의 분석)

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Hong, Seok-Young;Hur, Seung-Oh;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • This study was performed to estimate the soil loss on a national scale and grade regions with the potential risk of soil erosion. Universal soil loss equation (USLE) for rainfall and runoff erosivity factors (R), cover management factors (C) and support practice factors (P) and revised USLE for soil erodibility factors (K) and topographic factors (LS) were used. To estimate the soil loss, the whole nation was divided into 21,337 groups according to city county, soil phase and land use type. The R factors were high in the southern coast of Gyeongnam and Jeonnam and part of the western coast of Gyeonggi and low in the inland and eastern coast of Gyeongbuk. The K factors were higher in the regions located on the lower streams of rivers and the plain lands of the western coast of Chungnam and Jeonbuk. The average slope of upland areas in Pyeongchang-gun was the steepest of 30.1%. The foot-slope areas from the Taebaek Mountains to the Sobaek Mountains had steep uplands. Total soil loss of Korea was estimated as $50{\times}10^6Mg$ in 2004. The potential risk of soil erosion in upland was the severest in Gyeongnam and the amount of soil erosion was the greatest in Jeonnam. The regions in which annual soil loss was estimated over $50Mg\;ha^{-1}$ were graded as "the very severe" and their acreage was $168{\times}10^3ha$ in 2004. The soil erosion maps of city/county of Korea were made based on digital soil maps with 1:25,000 scale.

A Study on the Influence of the Water System on the Location and Spatial Structure of Hongju-seong (수체계가 홍주성의 입지와 공간구조 변천과정에 미친 영향)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the water system on the location, spatial structure, and construction method of Hongju-eupseong, centering on Hongjumok-eupchi. During the Joseon Dynasty, the water system in Hongjumok-eupchi is composed of artificially constructed Seong-an Runnel and ponds based on a branch-shaped natural waterways flowing from south to north and west to east. Compiling the results of various literature records, excavations and analysis of map data, it can be seen that the water system has an important influence on the construction of Hongju-seong. Firstly, Hongju-seong from the Goryeo Dynasty to the late Joseon Dynasty is located using a circular shape of topographical structure and a small erosion basin formed on the inner side of the Hongseongcheon and Wolgyecheon streams without significant change in location. In particular, Wolgyecheon and Hongseongcheon are natural moats, which are harmonized with Sohyangcheon and riverside topographical structures, affecting the location and construction method of Hongju-seong, water related facilities, and the spatial structure of eupseong. It is understood that location characteristic of Hongju-seong reflects the urban location structure harmonized with waterways in ancient China and Korea. Secondly in harmony with the water system and topographic structure of Hongju-seong, it is an important factor in deciding the land use of the town, the arrangement of the town hall facilities and inducing various non-subsidiary measures such as the establishment of embankment forest with a secret function and the closure of the south gate. In addition, artificial drainage facilities such as Seongan runnel and ponds are being actively introduced from early on to protect the walls or towns from flooding of Wolgyecheon. Especially there were typical methods for protecting the walls from water damage such as the Joseon Dynasty stone castle structure that was integrated with saturn(soil wall) in the Goryeo Dynasty, retreating wall in the northern gate area in the late Joseon Dynasty, and the method of constructing wall using korean tile and stone floors between reinforced soil layers in the western and northern wall.

A Study on the Transitions and Site of temporary palace(Onyanghaenggung) according to the <Oncheonhaenggungdo>(1795) (<온천행궁도(溫泉行宮圖)>(1795)의 온양행궁지 추정 및 온양행궁 변천 고찰)

  • LEE Jeongsoo;KIM Ilhwan;LEE Kyeongmi;JI Wonku;CHOI Jaeseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.94-108
    • /
    • 2023
  • Onyanghaenggung Palace(temporary palace at Onyang) is an important cultural heritage that can substantially confirm the king's onhaeng(溫行) base on literature records such as <Ongungyeonggoedae(溫宮靈槐臺)>, <Oncheonhaenggungdo(溫泉行宮圖)> of 『Ongungsasil(溫宮事實)』『, Younggoedaegi(靈槐臺記)』and cultural property such as Yeonggoedae(靈槐臺) and Shinjeong Monument(神井碑). As the Onyang Tourist Hotel is located in the presumed site of the Onyanghaenggung Palace, even the identity of the Onyanghaenggung Palace site is being threatened without restoration efforts. The purpose of this study is to estimate the location of Onyanghaenggung Palace based on <Oncheonhaenggungdo> before the damages during the Japanese colonial period. To achieve these purposes, records related to Onhaeng during successive kings' terms in the Joseon Dynasty are first reviewed, before changes in the architecture of Onyanghaenggung Palace that took place in the Joseon Dynasty and damage suffered during the Japanese colonial period are summarized, and finally <Oncheonhaenggungdo>, <Eupji>, <Ancient Maps>, <Jijeokwondo> are reviewed. Based on these processes, the location of Onyanghaenggung Palace is estimated by comparing the current Onyang Tourist Hotel and the surrounding area. The results of this study are as follows. First, if the 1,758 cheok(尺) of 「Onyanggun eupji」 and 「Hoseo eupji」 are converted in Jucheok(周尺), the scope of Onyanghaenggung Palace is close to the inner circumference of the site(垈) in Jijeokwondo(1914). Second, the streamlet leading to Oncheoncheon(溫泉川) from the southern side of Onyanggwan(溫陽館), the hot spring hole in use of <Distribution Map of Hot Spring(溫泉分布見取圖)>(1925, 1928), and considering the relationship of the inner east gate(內東門), Bigak(碑閣), Sinjeong(神井) of <Oncheonhaenggungdo>, the building of Hermann Gustav Theodor Sander and the Copyright Commission's Onyang Hot Springs photograph can be estimated as the Onyanghaenggung Palace Hot-spring, namely Tangsil(湯室). Third, in the process of developing to amusement park, the transfer and relocation of the Yeonggaedae site(a governmentowned property) was requested by Gyeongnam Railway Company, but Chungcheongnam-do denied transfer and relocation of the Yeonggaedae because of the importance in the history of Onyang Hot Springs, so the government-owned Yeonggaedae Monument site were permanently preserved at the current location together with the hoe tree(Sophora japonica L.). Also, Yeonggoedae in <Tourists Attractions around Gyeongnam Railway in Joseon (朝鮮京南鐵道沿線名所交通図絵)> (1929) is shown to exist in its current location, and it can be seen that the Shinjeong Monument Pavilion was moved to the front of Shinjeonggwan (神井館). Based on the circumference of Onyanghaenggung Palace, the location of Onyanghaenggung Palace Hot Spring (Tangsil) and Yeonggaedae Monument Pavilion, changes in roads and lots of land during the Japanese colonial period and the modern period, as well as the location of Onyanghaenggung Palace and other major buildings, can be estimated to extend to the current Shimin-ro and Onyang Hot Spring Market.