• Title/Summary/Keyword: Land surface temperature

Search Result 522, Processing Time 0.025 seconds

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do (Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.227-237
    • /
    • 2020
  • Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

Geochemical Modeling of Groundwater in Granitic Terrain: the Yeongcheon Area (영천 화강암지역 지하수의 지화학적 모델링)

  • Koh, Yong-Kwon;Kim, Chun-Soo;Bae, Dae-Seok;Yun, Seong-Taek
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.192-202
    • /
    • 1998
  • We investigated the geochemistry and environmental isotopes of granite-bedrock groundwater in the Yeongcheon diversion tunnel which is located about 300 m below the land surface. The hydrochemistry of groundwaters belongs to the Ca-HCO$_3$type, and is controlled by flow systems and water-rock interaction in the flow conduits (fractures). The deuterium and oxygen-18 data are clustered along the meteoric water line, indicating that the groundwater are commonly of meteoric water origin and are not affected by secondary isotope effects such as evaporation and isotope exchange. Tritium data show that the groundwaters were mostly recharged before pre-thermonuclear period and have been mixed with younger surface water flowing down rapidly into the tunnel along fractured zones. Based on the mass balance and reaction simulation approaches, using both the hydrochemistry of groundwater and the secondary mineralogy of fracture-filling materials, we have modeled the low-temperature hydrogeochemical evolution of groundwater in the area. The results of geochemical simulation show that the concentrations of Ca$\^$2+/, Na$\^$+/ and HCO$_3$and pH of waters increase progressively owing to the dissolution of reactive minerals in flow paths. The concentrations of Mg$\^$2+/ and K$\^$+/ frist increase with the dissolution, but later decrease when montmorillonite and illitic material are precipitated respectively. The continuous adding of reactive minerals, namely the progressively larger degrees of water/rock interaction, causes the formation of secondary minerals with the following sequence: first hematite, then gibbsite, then kaolinite, then montmorillonite, then illtic material, and finally microcline. During the simulation all the gibbsite is consumed, kaolinite precipitates and then the continuous reaction converts the kaolinite to montmorillonite and illitic material. The reaction simulation results agree well with the observed, water chemistry and secondary mineralogy, indicating the successful applicability of this simulation technique to delineate the complex hydrogeochemistry of bedrock groundwaters.

  • PDF

RADARSAT SAR Investigations of Lineament and Spring Water in Cheju Island (RADARSAT SAR 자료를 이용한 제주도 선구조 연구 및 용천 특성 연구)

  • 원중선;류주형;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.325-342
    • /
    • 1998
  • Two RADARSAT SAR images with different modes acquired by Canadian Space Agency to test the effectiveness of geological lineament extraction and spring water detection over the Cheju Island. Geological lineaments are poorly developed this basalt dominant volcanic island, but more linear features can be extracted when SAR and TM images are simultaneously analyzed than when TM image alone is used. This results mainly owe to the facts that RADARSAT SAR systems are able to provide data with different frequencies, azimuth, and incidence angles. Distribution of spring water along coast is poorly correlated with geological lineaments or drainage pattern, but those in middle range of mountain region are developed along geological lineaments. Detection of spring water using remotely sensed images are turned out to be very difficult to achieve. Radial shaped sea surface temperature anomaly derived from TM thermal band should be the best candidate for spring water, but the resolution is not high enough. We also investigate the normalized radar cross section (or sigma naught) converted from RADARSAT and ERS-1 SAR data but to discriminate the spring water effectively except where relatively large water mass is observed on land side. Speckle noise and irregularity in physical sea surface condition are the serious obstacles for this application. ERS-1 SAR image acquired in low incidence angle was more useful for geological lineament estimation and water body study than RADARSAT SAR images with high incidence angles. Therefore the selection of incidence angle is critical in geological and spring water applications of SAR images, and low incidence angles less than about 30$^{\circ}$ are recommended to monitor the Cheju volcanic island.

A Study on the Rainfall Infiltration Capacity of Soil (A Study on the Mid-Mountain Area of Jeju Island) (강우의 토양 침투 투수성 연구(제주도 중산간 지역을 중심으로))

  • Jeon, Byeong Chu;Lee, Su Gon;Kim, Sung Soo;Kim, Ki Su;Kim, Nam Ju
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.99-112
    • /
    • 2019
  • Rainfall infiltration through the unsaturated zone is influenced by a range of factors including topography, geology, soil, rainfall intensity, temperature and vegetation; the actual infiltration varies largely in time and space. The infiltration capacity of soil is a critical factor in identifying groundwater recharge and leakage of surface water. It may differ depending on soil types and geological features of a particular basin or territory as well as on the usage of the land. This study was conducted in forest and farmland region of the mid-mountain area (EL. 50~300 m) of Jeju Island to test soil infiltration capacity of the area where rainfall contributes to groundwater. Results were analyzed using the four soil group classification methods presented by Jeong et al. (1995) and NAS (2007) to discover that the method offered by NAS (2007) is more reliable in the mid-mountain area of Jeju Island. The study compares and reviews the existing classification methods using the results of infiltration capacity tests executed on different soil groups throughout the whole region of the Jeju mid-mountain area. It is expected that this work will serve as a guideline for evaluating surface water recharge and hydraulic characteristics of Jeju Island.

Long-term Variation and Characteristics of Water Quality in the Gunsan Coastal Areas of Yellow Sea, Korea (군산연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Choi, Ok-In;Kwon, Jung-No;Jeon, Kyeong-Am;Jo, Jo-Yeong;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.297-313
    • /
    • 2009
  • Long-term trends and distribution patterns of water quality were investigated in the Gunsan coastal areas of Yellow Sea, Korea from 1972 to 2006. Water samples were collected at 6 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns of temperature, DO and SS were not clear among stations but the seasonal variations were distinct except COD and SS. The trend analysis by principal component analysis(PCA) during 24 years revealed the significant variations in water quality in the study area. Spatial water qualities were clearly classified into 3 clusters by PCA; station cluster 1, 2~4, and 5~6. Annual water qualities were clearly classified into 4 surface water clusters and 5 bottom water clusters by PCA. By this multi-variate analysis. The annual trends were summarized as follows; Salinity, pH and DO tended to increase since late 1970's, COD to increase since 1987, and SS to decrease and nutrients to increase in Gunsan coastal waters due to the input of fresh water from land same as in Kyoungin coastal area, Asan coastal area and Choensoo bay.

  • PDF

Coupled Model Development between Groundwater Recharge Quantity and Climate Change Using GIS (GIS를 이용한 기후변화 연동 지하수 함양량 산정 모델 개발 및 검증)

  • Lee, Moung-Jin;Lee, Joung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.36-51
    • /
    • 2011
  • Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management.

Characteristics of Ocean Environment Before and After Coastal Upwelling in the Southeastern Part of Korean Peninsula Using an In-situ and Multi-Satellite Data (다중위성 및 현장관측을 이용한 동해남부 연안용승 발생 전후의 해양환경 특성)

  • Kim, Sang-Woo;Go, Woo-Jin;Kim, Seong-Soo;Jeong, Hee-Dong;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • The objective of this paper is to explore the short-term variability of water temperature and chlorophyll a (Chl-a) derived from in-situ and satellite data (NOAA, Sea WiFS and QuikScat) in the upwelling region of the southeastern part of Korean Peninsula in June and August, 2007. Particularly we focused on the spatial variability of sea surface temperature(SST) and Chl-a in the East Korean Warm Current region. In the results of the in-situ data, the peaks of Chl-a in june was shown at a depth of 50m The peaks of Chl-a in August was shown at a depth of 10m at the stations 4 and 5 near the land, and a depth of 30m at the other stations. The Chl-a concentrations in August were also lower than those in june except for station 5. As a result, the peaks of Chl-a in August occurred at a depth of 20~40 m shallower than those of Chl-a in june. This indicates that the nutrient-rich water within the mixed layer depth may be immediately supplied by the coastal upwelling, which is due to the southerly component of wind. The relationship between SST and Chl-a showed a negative correlation, and the high concentration of Chl-a occurred in the cold water area. The southerly wind and the East Korean Warm Current influenced a remarkable offshore movement of the cold water and Chl-a near the coastal area.

Failure Analysis and Heat-resistant Evaluation of Electric Fuel Pump for Combat Vehicle (전투차량용 전기식 연료펌프의 고장분석 및 내열성능 평가)

  • Kwak, Daehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.634-640
    • /
    • 2020
  • Failure analysis and heat-resistant were performed for an electric fuel pump that is installed in the fuel tank to transfer fuel to the engine of combat vehicles. The fuel pump with a DC motor was disassembled and inspected to determine the cause of failure. The failure phenomenon was classified into three categories based on observations of the inside of the housing: burnt winding, quick brush abrasion, and fuel leak into the pump. Based on the inspection results, it was estimated that overheating was the main cause of failure. The thermal test was conducted under the no-load condition in 24 hours, and the thermal sensor was installed on the stator surface and the brush holder to check the possibility of damage to the winding due to overheating. When the ambient temperature of the fuel pump was set to 68 ℃, the stator temperature increased to 135.9 ℃, and the winding of the motor was almost damaged. The test results confirmed the lack of heat resistance of fuel pump windings, and suggested that the type F of insulation class (below 155 ℃) of the windings and varnish should be replaced with type C or higher that can be used above 180 ℃.

Analysis of Environmental Equity of Green Space Services in Seoul - The Case of Jung-gu, Seongdong-gu and Dongdaemun-gu - (서울지역 녹지서비스의 환경형평성 분석 - 중구, 성동구, 동대문구를 사례로 -)

  • Ko, Young Joo;Cho, Ki-Hwan;Kim, Woo-Chan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.100-116
    • /
    • 2019
  • Urban green spaces, as a means to mitigate social problems and environmental risks, are getting more attention in evaluating urban environment. The inequity of green space distribution is becoming a major issue in urban planning and management. This study investigated the characteristics of green space in 3 districts (Jung-gu, Dongdaemun-gu, Seongdong-gu), that are composed of 46 administrative divisions in central Seoul, to analyze the environmental equity of urban green spaces. The correlations between the amount of green space, including the coverage of street trees, and the socioeconomic status of each administrative division were analyzed. To deduce the effects of plant coverage on the urban temperature regime, the relationship between the normalized difference of vegetation index (NDVI) and land surface temperature (LST) was analyzed. The research revealed that the mean NDVI of an administrative division was negatively correlated with the percentage of basic living recipients and disabled people. The LST of a division with low NDVI was higher due to the lack of green coverage. Such environmental inequities were closely related to residential building type, which was strongly affected by the economic status of residents. The LST of an apartment area was $2.0^{\circ}C$ lower than that of single-family houses and multi-housing areas. This is expected as the average NDVI of the apartment area was more than twice as high as the other environments considered in this study. The inequity can be exacerbated without urban planning which is deliberately designed to reduce it.

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over $550^{\circ}C$. The quartz is phase transition from ${\alpha}$-quartz to ${\beta}$-quartz at $573^{\circ}C$, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over $800^{\circ}C$. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from $550^{\circ}C$ to $800^{\circ}C$. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.