• Title/Summary/Keyword: Land Information Model

Search Result 864, Processing Time 0.027 seconds

Analysis of Market and Management for Global Container Terminal Operators (글로벌 컨테이너 터미널 운영사의 시장 및 경영 현황 분석)

  • Lee, Joo-Ho;Won, Seung-Hwan;Choi, Na-Young-Hwan;Yun, Won-Young
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.47-66
    • /
    • 2016
  • Once it has been built, a container terminal is impossible to move to another location. It is hard to rectify wrong decisions in a container terminal. This highlights the importance of decision making for a container terminal. The port management about a container terminal has developed from a cargo interface location between sea and land transport, to the standardization of information and procedures due to globalization among global shipping and terminal operators. This research focuses on the current states of market and management for global container terminal operators by investigating up-to-date data for them. The current market states for global container terminal operators are analyzed by using by Herfindahl-Hirschman Index. The analyses of current management states for global container terminal operators are divided into profitability analysis, activity analysis, and bankruptcy risk analysis. Finally, global container terminal operators are clustered into three groups by the current management states.

Probabilistic evaluation of ecological drought in forest areas using satellite remote sensing data (인공위성 원격 감지 자료를 활용한 산림지역의 생태학적 가뭄 가능성에 대한 확률론적 평가)

  • Won, Jeongeun;Seo, Jiyu;Kang, Shin-Uk;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.705-718
    • /
    • 2021
  • Climate change has a significant impact on vegetation growth and terrestrial ecosystems. In this study, the possibility of ecological drought was investigated using satellite remote sensing data. First, the Vegetation Health Index was estimated from the Normalized Difference Vegetation Index and Land Surface Temperature provided by MODIS. Then, a joint probability model was constructed to estimate the possibility of vegetation-related drought in various precipitation/evaporation scenarios in forest areas around 60 major ASOS sites of the Meteorological Administration located throughout Korea. The results of this study show the risk pattern of drought related to forest vegetation under conditions of low atmospheric moisture supply or high atmospheric moisture demand. It also identifies the sensitivity of drought risks associated with forest vegetation under various meterological drought conditions. These findings provide insights for decision makers to assess drought risk and develop drought mitigation strategies related to forest vegetation in a warming era.

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery (인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법)

  • Lee, Seung Jae;Yoon, Ji Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.311-318
    • /
    • 2021
  • Research has been ongoing to detect ships from offshore photographs for a variety of reasons, including maritime security, identifying international trends, and social scientific research. Due to the development of artificial intelligence, R-CNN models for object detection in photographs and images have emerged, and the performance of object detection has risen dramatically. Ship detection in offshore photographs using the R-CNN model has also begun to apply to satellite photography. However, satellite images project large areas, so various objects such as vehicles, landforms, and buildings are sometimes recognized as ships. In this paper, we propose a novel methodology to improve the performance of ship detection in satellite photographs using R-CNN series models. We separate land and sea via marker-based watershed algorithm and perform morphology operations to specify RoI one more time, then detect vessels using R-CNN family models on specific RoI to reduce typology. Using this method, we could reduce the misdetection rate by 80% compared to using only the Fast R-CNN.

Development of a disaster index for quantifying damages to wastewater treatment systems by natural disasters (하수처리시설의 자연 재해 영향 정량화 지수 개발 연구)

  • Park, Jungsu;Park, Jae-Hyeoung;Choi, June-Seok;Heo, Tae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.53-61
    • /
    • 2021
  • The quantified analysis of damages to wastewater treatment plants by natural disasters is essential to maintain the stability of wastewater treatment systems. However, studies on the quantified analysis of natural disaster effects on wastewater treatment systems are very rare. In this study, a total disaster index (DI) was developed to quantify the various damages to wastewater treatment systems from natural disasters using two statistical methods (i.e., AHP: analytic hierarchy process and PCA: principal component analysis). Typhoons, heavy rain, and earthquakes are considered as three major natural disasters for the development of the DI. A total of 15 input variables from public open-source data (e.g., statistical yearbook of wastewater treatment system, meteorological data and financial status in local governments) were used for the development of a DI for 199 wastewater treatment plants in Korea. The total DI was calculated from the weighted sum of the disaster indices of the three natural disasters (i.e., TI for typhoon, RI for heavy rain, and EI for earthquake). The three disaster indices of each natural disaster were determined from four components, such as possibility of occurrence and expected damages. The relative weights of the four components to calculate the disaster indices (TI, RI and EI) for each of the three natural disasters were also determined from AHP. PCA was used to determine the relative weights of the input variables to calculate the four components. The relative weights of TI, RI and EI to calculate total DI were determined as 0.547, 0.306, and 0.147 respectively.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

LIM Implementation Method for Planning Biotope Area Ratio in Apartment Complex - Focused on Terrain and Pavement Modeling - (공동주택단지의 생태면적률 계획을 위한 LIM 활용방법 - 지형 및 포장재 모델링을 중심으로 -)

  • Kim, Bok-Young;Son, Yong-Hoon;Lee, Soon-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.14-26
    • /
    • 2018
  • The Biotope Area Ratio (BAR) is a quantitative pre-planning index for sustainable development and an integrated indicator for the balanced development of buildings and outdoor spaces. However, it has been pointed out that there are problems in operations management: errors in area calculation, insufficiency in the underground soil condition and depth, reduction in biotope area after construction, and functional failure as a pre-planning index. To address these problems, this study proposes implementing LIM. Since the weights of the BAR are mainly decided by the underground soil condition and depth with land cover types, the study focused on the terrain and pavements. The model should conform to BIM guidelines and standards provided by government agencies and professional organizations. Thus, the scope and Level Of Detail (LOD) of the model were defined, and the method to build a model with BIM software was developed. An apartment complex on sloping ground was selected as a case study, a 3D terrain modeled, paving libraries created with property information on the BAR, and a LIM model completed for the site. Then the BAR was calculated and construction documents were created with the BAR table and pavement details. As results of the study, it was found that the application of the criteria on the BAR and calculation became accurate, and the efficiency of design tasks was improved by LIM. It also enabled the performance of evidence-based design on the terrain and underground structures. To adopt LIM, it is necessary to create and distribute LIM library manuals or templates, and build library content that comply with KBIMS standards. The government policy must also have practitioners submit BIM models in the certification system. Since it is expected that the criteria on planting types in the BAR will be expanded, further research is needed to build and utilize the information model for planting materials.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.