• Title/Summary/Keyword: Land Cover Classification Method

Search Result 165, Processing Time 0.042 seconds

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Web-based synthetic-aperture radar data management system and land cover classification

  • Dalwon Jang;Jaewon Lee;Jong-Seol Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1858-1872
    • /
    • 2023
  • With the advance of radar technologies, the availability of synthetic aperture radar (SAR) images increases. To improve application of SAR images, a management system for SAR images is proposed in this paper. The system provides trainable land cover classification module and display of SAR images on the map. Users of the system can create their own classifier with their data, and obtain the classified results of newly captured SAR images by applying the classifier to the images. The classifier is based on convolutional neural network structure. Since there are differences among SAR images depending on capturing method and devices, a fixed classifier cannot cover all types of SAR land cover classification problems. Thus, it is adopted to create each user's classifier. In our experiments, it is shown that the module works well with two different SAR datasets. With this system, SAR data and land cover classification results are managed and easily displayed.

Evaluation of the Pi-SAR Data for Land Cover Discrimination

  • Amarsaikhan, D.;Sato, M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1087-1089
    • /
    • 2003
  • The aim of this study is to evaluate the Pi-SAR data for land cover discrimination using a standard method. For this purpose, the original polarization and Pauli components of the Pi-SAR X-band and L-band data are used and the results are compared. As a method for the land cover discrimination, the traditional method of statistical maximum likelihood decision rule is selected. To increase the accuracy of the classification result, different spatial thresholds based on local knowledge are determined and used for the actual classification process. Moreover, to reduce the speckle noise and increase the spatial homogeneity of different classes of objects, a speckle suppression filter is applied to the original Pi-SAR data before applying the classification decision rule. Overall, the research indicated that the original Pi-SAR polarization components can be successfully used for separation of different land cover types without taking taking special polarization transformations.

  • PDF

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).

Updating Land Cover Maps using Object Segmentation and Past Land Cover Information (객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신)

  • Kwak, Geun-Ho;Park, Soyeon;Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1089-1100
    • /
    • 2017
  • This paper presented a method using past land cover maps in image segmentation and training set collection for updating land cover maps. In this method, the object boundaries in past land cover maps were used for segmenting image clearly. Also, the classes of past land cover maps were used to extract additional informative training set from the initial classification result using a small number of initial training set. To evaluate the applicability of proposed method, a case study for updating land cover maps was carried out using middle-level land cover maps and WorldView-2 image in the Taean-gun, South Korea. As a result of the case study, the confusions between urban and barren, paddy/dry field and grassland in the initial classification result were reduced by adding training set. In addition, the object segmentation using boundaries of past land cover map cleared land cover boundaries and improved classification accuracy. Based on the result of case study, the proposed method using past land cover maps is expected to be useful for updating land cover maps.

Land Cover Classification over Yellow River Basin using Land Cover Classification over Yellow River Basin using

  • Matsuoka, M.;Hayasaka, T.;Fukushima, Y.;Honda, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.511-512
    • /
    • 2003
  • The Terra/MODIS data set over Yellow River Basin, China is generated for the purpose of an input parameter into the water resource management model, which has been developed in the Research Revolution 2002 (RR2002) project. This dataset is mainly utilized for the land cover classification and radiation budget analysis. In this paper, the outline of the dataset generation, and a simple land cover classification method, which will be developed to avoid the influence of cloud contamination and missing data, are introduced.

  • PDF