• 제목/요약/키워드: Land Cover Classification Map

검색결과 154건 처리시간 0.026초

초분광 위성영상 Hyperion을 활용한 토지피복지도 자동갱신 연구 (Study on Automated Land Cover Update Using Hyperspectral Satellite Image(EO-1 Hyperion))

  • 장세진;채옥삼;이호남
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.383-387
    • /
    • 2007
  • The improved accuracy of the Land Cover/Land Use Map constructed using Hyperspectal Satellite Image and the possibility of real time classification of Land Use using optimal Band Selective Factor enable the change detection from automatic classification using the existed Land Cover/Land Use Map and the newly acquired Hyperspectral Satellite Image. In this study, the effective analysis techniques for automatic generation of training regions, automatic classification and automatic change detection are proposed to minimize the expert's interpretation for automatic update of the Land Cover/Land Use Map. The proposed algorithms performed successfully the automatic Land Cover/Land Use Map construction, automatic change detection and automatic update on the image which contained the changed region. It would increase applicability in actual services. Also, it would be expected to present the effective methods of constructing national land monitoring system.

  • PDF

토지피복분류에 관한 이론적 연구 - 자연환경관리를 중심으로 - (A Theoretical Study on Land Cover Classification - Focused on Natural Environment Management -)

  • 전성우;김귀곤;박종화;이동근
    • 한국환경복원기술학회지
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 1999
  • Land cover classification is an essential basic information in natural environment management; however, land cover classification studies in Korea have not yet been proceeded to a sufficient level. At the present, only a limited number of the precedent studies that only cover definite city area has been conducted. Furthermore, there is almost no research conducted on the land cover classification schemes that could accurately classify the Korea's land cover conditions. This study primarily focuses on the land cover classification scheme which carries the most urgent priority in order to classify and to map out the Korean land cover conditions. In order to develop the most suitable land cover classification scheme, many foreign land cover classification cases and projects that are being carried out were reviewed in depth. The land cover classification scheme this study proposes comprises 3 levels : The first level consists of 7 different classes; the second level consists of 22 different classes; and the third level is made up of 50 classes. The land cover classification map will serve many important roles in natural environment management, such as the conjecture of natural habitats and estimation of oxygen production or carbon dioxide absorption capability of a forest. In water pollution modelling, the land cover classification data can be used to estimate and locate non-point sources of water pollution. If applied to a watershed, modelling it will allow to estimate the total amount of pollution from non-point sources of pollution in the water shed. The land cover classification data will also be good as a barometer data that determines defusion of air pollutants in air pollution modelling.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • 대한원격탐사학회지
    • /
    • 제34권4호
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구 (A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map)

  • 장세진;이호남;김진광;채옥삼
    • 한국측량학회지
    • /
    • 제24권3호
    • /
    • pp.289-297
    • /
    • 2006
  • 토지피복지도는 토지의 피복특성과 토지활용특성을 나타내는 자료로서 토지피복분류체계에 따라 계층적인 구조로 1998년부터 제작되고 있다. 대분류는 Landsat 위성영상을 활용하여 남 북한에 대한 작업이 완료되었으며, 중분류는 IRS-1C, IRS-1D, KOMPSAT, SPOT-5 영상을 저해상 컬러 영상과 영상융합을 한 후, 그 결과자료를 전문가가 도화하여 제작하고 있다. 특히 도화에 의한 중분류 토지피복지도 제작은 위성영상의 구매 및 자료처리, 토지피복 지도제작 과정에서 막대한 비용이 필요하다. 본 논문에서는 최근 많은 연구가 수행되고 있는 초분광 위성영상인 EO-1 Hyperion을 이용한 중분류 토지피복지도 제작 가능성을 연구했다. 많은 분광정보를 제공하는 Hyperion 영상과 기존에 사용하던 Landsat-7 ETM+ 영상의 토지피복분류 비교 연구를 수행하여 Hyperion의 분류정확도를 평가했다. 또한, Hyperion에 적합한 최적밴드선택 방법을 통하여 초분광 위성영상 활용의 효율성을 증대시켰다.

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

An Adjustment for a Regional Incongruity in Global land Cover Map: case of Korea

  • Park Youn-Young;Han Kyung-Soo;Yeom Jong-Min;Suh Yong-Cheol
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.199-209
    • /
    • 2006
  • The Global Land Cover 2000 (GLC 200) project, as a most recent issue, is to provide for the year 2000 a harmonized land cover database over the whole globe. The classifications were performed according to continental or regional scales by corresponding organization using the data of VEGETATION sensor onboard the SPOT4 Satellite. Even if the global land cover classification for Asia provided by Chiba University showed a good accuracy in whole Asian area, some problems were detected in Korean region. Therefore, the construction of new land cover database over Korea is strongly required using more recent data set. The present study focuses on the development of a new upgraded land cover map at 1 km resolution over Korea considering the widely used K-means clustering, which is one of unsupervised classification technique using distance function for land surface pattern classification, and the principal components transformation. It is based on data sets from the Earth observing system SPOT4/VEGETATION. Newly classified land cover was compared with GLC 2000 for Korean peninsula to access how well classification performed using confusion matrix.

IKONOS 영상자료를 이용한 토지피복도 개선 (Improving of land-cover map using IKONOS image data)

  • 장동호;김만규
    • Spatial Information Research
    • /
    • 제11권2호
    • /
    • pp.101-117
    • /
    • 2003
  • 고해상도 위성영상분석은 국지적 규모의 토지피복 변화 및 대기 상태의 모니터링을 위한 효과적인 기술로 인식되어 왔다. 본 연구에서는 고해상도 영상인 IKONOS 영상과 기존에 작성된 토지이용도를 이용하여 국지적 규모의 토지피복도를 새로 작성하였다. 토지피복 분류기법으로는 퍼지분류 기법을 사용하였으며, 소속함수의 결합방법으로 minimum 연산자를 이용하였다. 분리도 분석에서는 모든 밴드에서 분리도가 높지 않은데, 원인은 계절적 영향에 따른 분광반사율의 차이 때문이다. 토지피복도 작성결과 육상에서는 침엽수림과 경지가, 해양에서는 간석지 및 해빈의 변화가 가장 크다. 분류의 전체정확도는 95.0%, kappa 계수는 0.94%로 나타나 높은 분류정확도를 보였다. 분류항목별 정확도에서는 대부분의 분류항목이 90% 이상의 분류정확도를 보였다. 그러나 혼합림과 하천 및 저수지 등은 낮은 분류정확도를 보였다. 이들 원인은 농경지 담수로 인하여 수역으로 분류항목이 변하거나 유사한 분광패턴으로 분류항목이 혼재된 결과이다. 이들 분류항목의 분류정확도를 높이기 위해서는 계절적 요인을 반드시 고려하여야 할 것이다. 결론적으로 IKONOS 영상은 토지이용도 작성 및 수정이 가능하며, 추후 GIS 공간자료와 통합하여 토지피복도를 작성한다면 보다 정확한 의사결정 보조 자료로서 유용하게 활용될 수 있을 것이다.

  • PDF

세분류 토지피복지도 분류체계 개선방안 연구 - 환경부 토지피복지도를 중심으로 - (A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment -)

  • 오관영;이명진;노우영
    • 대한원격탐사학회지
    • /
    • 제32권2호
    • /
    • pp.105-118
    • /
    • 2016
  • 본 연구는 현재 환경부에서 제공하는 토지피복지도 중 세분류 토지피복지도의 분류체계를 개선하기 위한 것이다. 이를 위하여 첫째, 해외 토지피복지도 분류 항목을 중점 검토하였다. 둘째, 기존 세분류 분류체계를 적용하여 구축된 항목 당 면적비율을 분석하였다. 셋째, 실제 세분류 토지피복지도를 사용하는 사용자(전문가 및 일반인)을 대상으로 분류체계 개선에 대하여 설문조사를 수행하였다. 넷째, 최종적으로 기존 41개 분류체계를 33개 항목으로 개선하는 분류체계를 설정하였다. 다섯째, 설정된 토지피복 분류항목을 시범 적용하였으며, 기존 분류체계와 개선안에 따른 토지피복 분류 결과를 비교하였다. 연구대상지는 시가화 지역, 농경지등 다양한 지표특성을 지니고, 지형지물이 비교적 골고루 분포되어 있는 고양시 일산 지역을 대상으로 하였다. 연구에 사용된 기본 영상은 국토지리정보원에서 촬영하고 있는 0.25 m 급 정사항공영상이며, 관련 참조자료는 수치지형도, 정밀 임상도, 지적도, 행정구역도 등을 사용하였다. 개선된 분류체계를 시범지역에 적용한 결과 문화체육 휴양시설이 $1.84km^2$으로 분류되었으며, 이는 기존 분류체계 면적대비 약 2배 이상 증가한 것이다. 기타 교통통신시설 및 교육행정시설 등은 분류되지 않았다. 본 연구결과는 향후 세분류 토지피복지지도 구축과 갱신의 효율성과 실질적인 사용자 수요를 반영하였다는데 의의가 있다.

Extraction of Non-Point Pollution Using Satellite Imagery Data

  • Lee, Sang-Ik;Lee, Chong-Soo;Choi, Yun-Soo;Koh, June-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.96-99
    • /
    • 2003
  • Land cover map is a typical GIS database which shows the Earth's physical surface differentiated by standardized homogeneous land cover types. Satellite images acquired by Landsat TM were primarily used to produce a land cover map of 7 land cover classes; however, it now becomes to produce a more accurate land cover classification dataset of 23 classes thanks to higher resolution satellite images, such as SPOT-5 and IKONOS. The use of the newly produced high resolution land cover map of 23 classes for such activities to estimate non-point sources of pollution like water pollution modeling and atmospheric dispersion modeling is expected to result a higher level of accuracy and validity in various environmental monitoring results. The estimation of pollution from non-point sources using GIS-based modeling with land cover dataset shows fairly accurate and consistent results.

  • PDF