• Title/Summary/Keyword: Lamination direction

Search Result 43, Processing Time 0.022 seconds

Tribological Behavior of the Alumina Reinforced with Unidirectionally Oriented SiC whiskers depending on whisker orientation (일방향성 배열을 가진 Sic whisker에 의해 강화된 알루미나 복합체의 Whisker orientation 에 따른 마모마찰 특성)

  • 간태석;한병동;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.220-224
    • /
    • 1999
  • Sliding wear test was employed to determine the effect of whisker content and orientation on the firiction and wear behavior of SiC whisker reinforced alumina. Composites containing unidirectionally oriented whiskers were prepared by a modified tape casting followed by lamination, binder removal and hot pressing in order to align the whiskers in the tape casting direction. Wear coefficients on three directions were measured; parallel and normal to the tape casting direction on the tape casting surface and normal to lamination direction on surfnce normal to the tape casting direction. In the effect of whisker orientation, the highest wear rate was obtained in the direction parallel tape casting direction and the lowest in the direction normal to lamination direction at all temperatures. Silicon oxide layer amoothing the surface was detected by energy dispersive X-ray analysis on the worn surface.

  • PDF

Shrinkage Control with Variation of Lamination Condition in Multilayer Ceramics (다층세라믹스 제조시 적층 공정 변수에 따른 수축율 조절)

  • 성재석;구기덕;윤종광
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1253-1259
    • /
    • 1996
  • In the fabrication of alumina-based multilayer ceramics sintering shrinkages with lamination conditions such as lamination pressure temperature and laminating with and without press die were compared. The sintering shrinkage was affected substantially by lamination pressure and temperature and in the case of laminatino without press die the lower laminated density and a large difference in shrinkage with direction were observed. These results can be explained by introducing a new factor which is the ratio of the changes of areas before and after lamination.

  • PDF

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

Analysis of Characteristic In Axial Flux Motor Considering the Laminated Stack Directions (적층 방향을 고려한 축방향 자속형 전동기의 특성 해석)

  • Lee, Byung-Jun;Cho, Won-Yong;Kim, Byong-Kuk;Won, Jin-Kuk;Cho, Yun-Hyun;Chun, Yon-Do;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1069-1070
    • /
    • 2007
  • In this paper, a new stator shape for axial flux motor was proposed. It consists of tooth and back-yoke laminated and be assembled with each other. The method assembling together has a significant characteristic. It is different direction of lamination between core and back-yoke. This paper shows analysis method considering the lamination direction and analyze characteristic of axial flux motor with stator proposed using 3D finite element method.

  • PDF

Feasibility of Manufacturing Desk and Chair with Curved Veneer Lamination (단판 적층성형 학생용 책상.의자의 제조적성)

  • Suh, Jin-Suk;Park, Jong-Young;Han, Ki-Man
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.2 s.30
    • /
    • pp.59-65
    • /
    • 2005
  • As physical condition of students improves, there is a need to develop human body-friendly desk and chair for students. In this study, desks and chairs were manufactured with curved veneer lamination under high frequency heating and pressing, using ten wood species such as Japanese red pine, Korean pine, pitch pine, Japanese larch, yellow poplar, black locust, oak, radiata pine, beech, and birch. The performance of these products were evaluated. The results obtained were summarized as follows; With high frequency heating, the turned lamination of veneers with full size sheet ($3{\times}6\;feet$) prepared by rotary lathe peeling was successfully applied for making the members of desk top, leg frames of desk and chair. Bending strengths of desk tops were relatively greater for yellow poplar, black locust and red pine, which were similar to those of beech and birch. Bending strengths of desk legs were classified into greater species group (red pine, yellow poplar, larch) and lower species group (radiata pine, Korean pine, pitch pine). Compressive strengths of chair legs in parallel direction to the lamination were greater in black locust and larch. On the other hand, differences between outer and inner gap at the top and drawer bottom of desk top were rather larger for the laminations of birch and beech, and less for those of yellow poplar and pitch pine, showing greater stability of open drawer space. In results, yellow poplar, larch, pitch pine and red pine showed good appearance and strength properties at the curved veneer lamination. Accordingly, it was believed that these domestic woods were able to substitute for birch which was being imported for the use of veneer-laminates type furniture.

  • PDF

Assessment of Cryogenic Material Properties of R-PUF Used in the CCS of an LNG Carrier

  • Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.217-231
    • /
    • 2022
  • Reinforced polyurethane foam (R-PUF), a material for liquefied natural gas cargo containment systems, is expected to have different mechanical properties depending on its stacking position of foaming as the glass fiber reinforcement of R-PUF sinks inside R-PUF under the influence of gravity. In addition, since R-PUF is not a homogeneous material, it is also expected that the coordinate direction within this material has a great correlation with the mechanical properties. So, this study was conducted to confirm this correlation with the one between the mechanical properties and the stacking position. In particular, in this study, R-PUF of 3 different densities (130, 170, and 210 kg/m3) was used, and tensile, compression, and shear tests of this material were performed under 5 temperatures. As a result of the tests, it was confirmed that the strength and modulus of elasticity of the material increased as the temperature decreased. Specifically, the strength and modulus of elasticity in the Z direction, which was the lamination direction, tended to be lower than those in the other directions. Finally, the strength and elastic modulus of different specimens of the material found at the bottom of their lamination compared to the specimens with these properties found at positions other than their lamination bottom were evaluated. Further analysis confirmed that as the temperature decreased, hardening of R-PUF occurred, indicating that the strength and modulus of elasticity increased. On the other hand, as the density of R-PUF increased, a sharp increase in strength and elastic modulus of R-PUF was observed.

Effects of Binder Burnout Temperatures on Sintering Shrinkage of Multilayer Ceramics (다층 세라믹스의 소결 수축율에 대한 Binder Burnout 온도의 영향)

  • 성재석;구기덕;윤종광
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1373-1379
    • /
    • 1996
  • Change of sintering shrinkage in alumina-based multilayer ceramics was observed in various lamination condi-tions and binder burnout (BBO) temperatures. It was found that the linear shrinkages in X and Y directions were nearly the same with the BBO temperatures but a large shrinkage difference in Z direction was observed. However this phenomenon was diminished when BBO temperature was increased. A linear relationship between the laminated density and the sintering shrinkage was found and the slope was independant on the BBO temperature but dependant on the shrinkage direction.

  • PDF

Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process (가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예)

  • Lee, Sang-Ho;Kim, Tae-Hwa;An, Dong-Gyu;Yang, Dong-Yeol;Chae, Hui-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.64-70
    • /
    • 2001
  • In all the Rapid Prototyping (RP) techniques, the computer-aided design (CAD) model of a three-dimensional part is sliced into horizontal layers of uniform, but not necessarily constant, thickness in the building direction. Each cross- sectional layer is successively deposited and, at the same time, bonded onto the previous layer. The stacked layers form a physical part of the model. The objective of this study is to develop a software for automatic generation of unit shape part(USP) for a new RP process, Variable Lamination Manufacturing using the linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S). In order to examine the applicability of the developed software to VLM-S, USPs of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials (고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석)

  • 이상호;장일영;김효진;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF