• Title/Summary/Keyword: Laminate composites

Search Result 316, Processing Time 0.021 seconds

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

A Study on Calculation of Composites Lamina Material Properties through Reverse Engineering of Light Weight Composite Car-body (경량 복합재 차체 구조의 역설계를 통한 복합재료 라미나 물성 산출 기법 연구)

  • Moon, Jin Bum;Kim, Jihoon;Jang, Hong Kyu;Park, Jisang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • In reverse engineering, one of the main tasks is reconstructing the mechanical properties of used materials. For an isotropic material, it could be defined by a single tensile test using a coupon extracted from the structure. In contrast, CFRP composites require many tests and complex procedures to define all the material properties because CFRP is an orthotropic material and a stacked laminate. In this paper, the procedure to reconstruct composite material properties is studied by using the classical lamination theory and the test data of three different laminates from a composite structure. A sample reconstruction of composite material properties using a composite car body is introduced to verify the method.

Magnetoelectric Characteristics on Layered Ni-PZT-Ni, Co, Fe Composites for Magnetic Field Sensor (자기센서용 Ni-PZT-Ni, Co, Fe 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range. The ME coefficient of Ni-PZT-Ni, Ni-PZT-Co and Ni-PZT-Fe composites reaches a maximum of $200mV/cm{\cdot}Oe$ at $H_{dc}=110$ Oe, $106mV/cm{\cdot}Oe$ at $H_{dc}=90$ Oe and $87mV/cm{\cdot}Oe$ at $H_{dc}=160$ Oe, respectively. A trend of ME charateristics on Ni-PZT-Co, Ni-PZT-Fe composites was similar to that of Ni-PZT-Ni composites. The ME output voltage shows linearly proportional to ac field $H_{ac}$ and is about 0~150 mV at $H_{ac}$=0~7 Oe and f=110 Hz in the typical Ni-PZT-Ni sample. The frequency shift effect due to the load resistance $R_L$ shows that the frequency range for magnetic field sensor application can be modulated with appropriate load resistance $R_L$. This sample will allow for a low-magnetic ac field sensor in the low-frequency (near f=110 Hz).

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

Load Transfer Behaviors of the Splice-Jointed Fiber Metal Laminates (연결이음 접합된 섬유금속적층판의 하중전달 거동 연구)

  • Roh Hee Seok;Choi Won Jong;Ha Min Su;Choi Heung Soap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.220-227
    • /
    • 2005
  • In this study, stress-displacement analytic solutions are obtained by a shear lag modeling method constructed for the spliced joint area with a splicing gap in the fiber metal laminate (FML). This gap can be empty or be filled with an adhesive material of elastic modulus $E_a$. Two splicing types are considered for spliced shear models, one for spliced in the center metal layer, the other for spliced in the outer metal layer. It is shown that from the viewpoint of the load transfer efficiency and the avoidability of disbond generation due to the shear and axial stresses at the interface between metal layer and composite layer of the gap-front in the spliced area, the center spliced type (k=2) is much preferable to the outer spliced type (k=1).

Cure simulation for a thick glass/epoxy laminate (유리섬유 강화 후판 복합재료의 경화공정 해석)

  • 오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.53-58
    • /
    • 2000
  • During the curing process of thick glass/epoxy laminates, a substantial amount of temperature lag and overshoot at the center of the laminates is usually experienced due to the large thickness and low thermal conductivity of the glass/epoxy composites. Also, it requires a longer time for full and uniform consolidation. In this work, temperature, degree of cure and consolidation of a 20mm thick unidirectional glass/epoxy laminate were investigated using an experiment and a 3-dimentional numerical analysis considering the exothermic reaction. From the experimental and numerical results, it was found that the experimentally obtained temperature profile agreed well with the numerical one and the cure cycle recommended by the prepreg manufacturer should be modified to prevent a temperature overshoot and to obtain full consolidation.

  • PDF

Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy (열-전기 유사성을 이용한 복합재료의 열전도도 예측)

  • 조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF