• Title/Summary/Keyword: Laminate Thickness

Search Result 188, Processing Time 0.023 seconds

Development of Heating Table Fabrication Process for the High Speed Curing Composites

  • Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Han, Joong-Won;Choi, Byung-Keun;Moon, Kyung-Man;Nisitani, Hironobu
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • Wind turbine generator is, recently, becoming bigger and bigger. So, in order to produce large amounts of electricity generation, we have to consider the length and thickness of the blade. We investigated the skills of processing for making the super thickness laminate through development fabrication process for high speed curing composite heating table.

Tensile Properties of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates at Low Temperatures (평직유리섬유 강화 에폭시 적층판의 저온 인장 특성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.788-795
    • /
    • 2008
  • To understand the tensile behaviors of GFRP at low temperature, three types of specimen have been used in this study. Tensile properties and fracture mechanisms for three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate were investigated at temperature range of about -30 to $15^{\circ}C$. The tensile properties of axial and edge type specimen decrease slightly with decreasing temperature to $-20^{\circ}C$. However, at $-30^{\circ}C$ the decreases in the tensile properties increased considerably. Below $-20^{\circ}C$, thickness type specimen showed a marked decreases in the tensile properties. It was obvious that the fracture manner of thickness type specimen was adhesive failure at above $-10^{\circ}C$ and a mixed adhesive and cohesive failure at below $-20^{\circ}C$.

An Optimal Design of the Rocket Nozzle Wall by the Numerical Method (수치해법에 의한 로켓 노즐벽의 최적설계)

  • Jin Won Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1986
  • It is the aims of this study to choose the materials and determine the material thickness of laminated Rocket Nozzle Wall operating at high pressure and high temperature. The heat conduction analysis of each layer was performed by Crank Nicolson method changing the thickness and the materials for the imput data of Tungsten, Graphite, Alumina, Aluminum, Molybdenum, Plastic laminate. The results of the study for pressure of 93.5kg/$cm^2$ and temperature of $3000^{circ}C$ in the nozzle dia of 40cm are as follows.

  • PDF

A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates

  • Rezaiee-Pajand, M.;Shahabian, F.;Tavakoli, F.H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.253-271
    • /
    • 2012
  • To analyze the bending and transverse shear effects of laminated composite plates, a thirteen nodes triangular element will be presented. The suggested formulations consider a parabolic variation of the transverse shear strains through the thickness. As a result, there is no need to use shear correction coefficients in computing the shear stresses. The proposed element can model both thin and thick plates without any problems, such as shear locking and spurious modes. Moreover, the effectiveness of $w_{,n}$, as an independent degree of freedom, is concluded by the present study. To perform the accuracy tests, several examples will be solved. Numerical results for the orthotropic materials with different boundary conditions, shapes, number of layers, thickness ratios and fiber orientations will be presented. The suggested element calculates the deflections and stresses more accurate than those available in the literature.

The Characteristics of Electrolyte Temperature and Current Density on Selective Jet Electrodeposition (선택적 금속 전착에 대한 전해질 온도 및 전류밀도 영향분석)

  • Park, Chan-Kyu;Kim, Sung-Bin;Kim, Young-Kuk;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.400-404
    • /
    • 2018
  • A metal 3D printer has been developed on its own to electrodeposit the localized area. Nozzles were used to selectively laminate the electrolytic plating method. To analyze the factors affecting the deposition, the stack height, thickness and surface roughness were experimentally analyzed according to the current density and the temperature of the electrolyte. Electrolytic temperature and current are electrodeposited when the deposition conditions are dominant over the etching conditions, but the thickness is kept constant. On the contrary, when the etching conditions are dominant, the electrodeposited shape is rather the etched. As a result, the uniformity of surface quality and electrodeposition rate could be improved by conducting experiments under constant conditions of electrolyte temperature and current density.

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

Finite Element Analysis of Large Deformation of Fiber Metal Laminates Under Bending for Stress-Strain Prediction (굽힘하중을 받는 섬유 금속 적층판의 응력-변형률 예측을 위한 대변형 유한요소해석)

  • Yeom, Kyung Mi;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.963-970
    • /
    • 2015
  • Laminate structures are used in the automobile, aerospace, and display industries. The advantages of fiber metal laminates are well known. Fiber metal laminates are useful for reducing the weight and improving impact resistance . However, currently, the mechanical properties of fiber metal laminates are not derived. In this paper, we use thickness as a factor for comparing the properties of laminates of various thickness combinations. The properties fiber metal laminates are analyzed using design of experiments. In addition, the finite element method is used to analyze elastic and plastic strains of fiber metal laminates and aluminum plates. The final goal of this paper is to find a suitable finite element model of fiber metal laminates under bending.

Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding (액상성형공정별 물리적/기계적 특성 비교 평가)

  • Park, Dong-Cheol;Kim, Tai-Gon;Kim, Seung-Hyeok;Shin, Do-Hoon;Kim, Hyeon-Woo;Han, Joong-won
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.304-310
    • /
    • 2018
  • Autoclave process has been remaining as one of the most robust and stable process in fabricating structural composite part of aerospace industry. It has lots of advantages, however exhibits some disadvantages or limitations in capital investment and operation. Recently, there have been various Out-of-Autoclave process being researched and developed to overcome those limitations. In this study, laminate specimens were fabricated using LCM (Liquid Composite Molding) process, regarded as one of potential OoA process. DB (Double bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion), VAP (Vacuum Assisted Process) and Autoclave process were used for laminate specimens. Void content, Thickness, Tg (Glass Transition Temperature), ILSS (Interlaminar Shear Strength) and Flexural strength properties were evaluated for comparison. It is verified that Autoclave based specimen has uniform thickness distribution, the lowest void content and outstanding mechanical properties. And, CAPRI based specimen exhibits relatively good physical and mechanical properties over DB and VAP based specimen and comparable mechanical properties with autoclave based specimen.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Evaluation of Laminate Property using Caulplate Application (카울플레이트 적용을 통한 라미네이트 특성 평가)

  • Park, Dong-Cheol;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.231-235
    • /
    • 2016
  • In this study, integrated co-bonded panels with the same configuration of hat stiffeners were fabricated and measured for ply waviness phenomenon. Total specimens consisted of 2 types; 1) the general co-bonded panel and 2) the co-bonded panel with caul plate made of carbon epoxy composite materials. The first general co-bonded panel specimen exhibited that laminate thickness on the stiffener location area was much thicker than the non-stiffener area and, there was ply waviness with 0.61 mm height and 3.29 mm length. In the second co-bonded panel specimen, the reduced waviness with 0.22 mm height and 1.37 length resulted in more than 50% improvements, which is due to the uniform pressure distribution of co-bonded interface by caul plate.