• Title/Summary/Keyword: Laminate Thickness

Search Result 188, Processing Time 0.025 seconds

A study on slit opening and flexural strength of carbon/epoxy prepregs with slit patterns (슬릿 패턴 형상에 따른 Carbon/Epoxy 프리프레그 성형물의 굽힘 강도 특성 및 슬릿 변형량 분석)

  • Lee, Sung-Gyun;Won, Si-Tae;Yoon, Gil-Sang;Kim, Yong-Dae;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.6-11
    • /
    • 2016
  • Designed patterns of slit are introduced to the uni-directional (UD) prepreg in order to enhance the formability of the carbon/epoxy composites without wrinkling and laddering. Three different types of the slit alignment along the thickness direction are applied to analyse the deformation behavior during the compression moulding process of laminates. Degrees of the slit open and the mechanical strength are evaluated based on the level of the compaction pressure in the course of forming process. Results have shown that the mechanical strength of laminates having slits could attain at least 80% of the conventional ones without slits. However, further studies are required to identify the direct relevance of the slit alignment in laminate to the mechanical properties.

Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates

  • Kant, T.;Swaminathan, K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.337-357
    • /
    • 2000
  • Analytical formulations and solutions for the first time, to the stability analysis of a simply supported composite and sandwich plates based on a higher order refined theory, developed by the first author and already reported in the literature are presented. The theoretical model presented herein incorporates laminate deformations which account for the effects of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of inplane displacements with respect to the thickness coordinate - thus modelling the warping of transverse cross sections more accurately and eliminating the need for shear correction coefficients. The equations of equilibrium are obtained using the Principle of Minimum Potential Energy (PMPE). The comparison of the results using this higher order refined theory with the available elasticity solutions and the results computed independently using the first order and the other higher order theories developed by other investigators and available in the literature shows that this refined theory predicts the critical buckling load more accurately than all other theories considered in this paper. New results for sandwich laminates are also presented which may serve as a benchmark for future investigations.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet;Benkhedda, A.;Adda bedia, E.A.;Boukert, B.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.315-331
    • /
    • 2019
  • The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Structural Behavior Analysis of Polymer Lattice Reinforced 3D Printing Cementitious Cladding (폴리머 격자 보강재를 이용한 3D 프린팅 시멘트계 외장재의 구조 거동 분석)

  • Kim, Hak-Beom;Park, Min-Jae;Ju, Young K.
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.3-10
    • /
    • 2018
  • Cladding that finishes the exterior of a building could enhance the value of the building, and shape control is an important factor. With the recent development of 3D printing, cementitious claddings were printed by 3D printer in China, U.S.A and elsewhere. On the other hand, the structural safety of the exterior panel should be examined, as casualties occur when the exterior panel fails due to typhoon or impact. Cement-based cladding is reinforced by wire mesh to improve safety. Introducing 3D printing composite system with polymer and cement, makes it possible to produce claddings fast and accurate. Prior to the development of 3D printing cementitious cladding, the major parameters influencing the optimal shape were identified based on structural performance. The wind load, joint, and bond behavior between polymer and cement were considered. Polymer laminate shape, order, and thickness were variables, and finite element analysis was performed.

Suppression of Shrinkage Mismatch in Hetero-Laminates Between Different Functional LTCC Materials

  • Seung Kyu Jeon;Zeehoon Park;Hyo-Soon Shin;Dong-Hun Yeo;Sahn Nahm
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.151-157
    • /
    • 2023
  • Integrating dielectric materials into LTCC is a convenient method to increase the integration density in electronic circuits. To enable co-firing of the high-k and low-k dielectric LTCC materials in a multi-material hetero-laminate, the shrinkage characteristics of both materials should be similar. Moreover, thermal expansion mismatch between materials during co-firing should be minimized. The alternating stacking of an LTCC with silica filler and that with calcium-zirconate filler was observed to examine the use of the same glass in different LTCCs to minimize the difference in shrinkage and thermal expansion coefficient. For the LTCC of silica filler with a low dielectric constant and that of calcium zirconate filler with a high dielectric constant, the amount of shrinkage was examined through a thermomechanical analysis, and the predicted appropriate fraction of each filler was applied to green sheets by tape casting. The green sheets of different fillers were alternatingly laminated to the thickness of 500 ㎛. As a result of examining the junction, it was observed through SEM that a complete bonding was achieved by constrained sintering in the structure of 'calcium zirconate 50 vol%-silica 30 vol%-calcium zirconate 50 vol%'.

Effect of Storage Temperature and Humidity on Water Vapor Permeability of Al-foil Laminate Paper (저장온도(貯藏溫度) 및 습도(濕度)가 알루미늄박(箔) 적층지(積層紙)의 수분투과율(水分透過率)에 미치는 영향(影響))

  • Park, Kil-Dong;Choi, Jin-Ho;Sung, Hyun-Soon;Hong, Soon-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.314-318
    • /
    • 1981
  • In order to improve the storage stability of spray and freeze dried red ginseng extract powder packed in a bottle, the water vapor permeability of Al-foil laminate paper used for cap closure and shelf life of those products on various storage temperatures and relative humidities were investigated. The thickness of the laminate paper was $93{\pm}3\:{\mu}m$ and its physical properties were equal to standard of ASTM (B-377-66) The absorption rate of the freeze dried powder was 2-6 times greater than that of the spray dried powder at $37^{\circ}C$. Therefore it was considered that the laminate could be used for cap closures for the spray dried powder but unsuitable for the freeze dried powder. The shelf life of the spray dried powder was longer than that of the freeze-dried powder at $37^{\circ}C$.

  • PDF

Experimental Research on the Effect of the Number of Layers by Overlay Welding of Monel-Clad Pipe on Weldability (모넬(Monel)-Clad 파이프의 오버레이 용접 적층수가 용접성에 미치는 영향에 관한 실험적 연구)

  • Choi, Hyeok;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.42-50
    • /
    • 2016
  • Overlay welding affects the chemical components and weld hardness by dilution of the lamination layer thickness, which determines the surface properties. This study experimentally investigates different numbers of layers for overlay welding monel materials, which are anti-corrosion materials. The Fe content, weldability of the base metal and monel materials, hardness, and surface flatness were examined. Each evaluation was carried out after overlay welding with three layers on the base material and pipe base material of the plate. The Fe content was evaluated by analyzing the constituents of each layer. The Fe content was satisfactory in the three layers. The weldability of the laminate specimens was evaluated by a bending test. The hardness and bead flatness of the laminate specimens were evaluated by micro Vickers and 3D measurements. The hardness was highest in the heat-affected zone with one layer, and it decreased with increasing lamination. In the case of bead flatness, there is a sharp difference in the deviation with increasing numbers of laminations, which should be considered carefully.

Optimal Design of Deep-Sea Pressure Hulls using CAE tools (CAE 기법을 활용한 심해 내압구조물의 최적설계에 관한 연구)

  • Jeong, Han Koo;Henry, Panganiban
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.477-485
    • /
    • 2012
  • Geometric configurations such as hull shape, wall thickness, stiffener layout, and type of construction materials are the key factors influencing the structural performance of pressure hulls. Traditional theoretical approach provides quick and acceptable solutions for the design of pressure hulls within specific geometric configuration and material. In this paper, alternative approaches that can be used to obtain optimal geometric shape, wall thickness, construction material configuration and stiffener layout of a pressure hull are presented. CAE(Computer Aided Engineering) based design optimization tools are utilized in order to obtain the required structural responses and optimal design parameters. Optimal elliptical meridional profile is determined for a cylindrical pressure hull design using metamodel-based optimization technique implemented in a fully-integrated parametric modeler-CAE platform in ANSYS. While the optimal composite laminate layup and the design of ring stiffener for a thin-walled pressure hull are obtained using gradient-based optimization method in OptiStruct. It is noted that the proposed alternative approaches are potentially effective for pressure hull design.