• Title/Summary/Keyword: Laminar flows

Search Result 225, Processing Time 0.021 seconds

An Experimental Study on the Transitional Flows in a Concentric Annu- lus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이유동에 관한 연구)

  • 김영주;김철수;황영규
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.299-305
    • /
    • 2002
  • The present experimental and numerical investigations are performed on the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully devel-oped flow of water and that of 0.2% CMC-water solution at a inner cylinder rotational speed of 0∼600 rpm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually decreased for turbulent flow regime.

A numerical study on the transient operation of high temperature heat pipe with a switching heat source (열원이 바뀌는 고온용 히트파이프의 천이 과정 동작에 관한 수치적 연구)

  • Park, Jong-Heung;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.68-78
    • /
    • 1997
  • A numerical study on the transient vapor flow and heat transfer is performed to investigate the ideal switching operation of heat source in a high temperature heat pipe. The cylindrical 2-dimensional compressible laminar vapor flow is assumed for the vapor space and the conjugate heat transfer for the heat pipe wall, wick and vapor space is calculated. The different boundary conditions such as constant heat flux, convective or radiative boundary at the outer wall are used respectively to compare the influence of boundary conditions on the transient operation. The transient temperature profile and the internal flow of the entire pipe for the switching operation are described as a result. The results show that the transient time is not significantly affected by the boundary conditions at the outer wall in present study. During the transition, two independent flows are observed temporarily on the right side and left side of the heat pipe. It is also found that the trend of temperature variation in the vapor region is different from the variation in the wick and wall region.

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL (고분자 전해질 연료전지의 매니폴드 설계 및 해석)

  • JUNG Hye-Mi;UM Sukkee;PARK Jungsun;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

Experimental Study on the Wall Jet Flow Induced by Impinging Circular Jet on Arotating Disk (충돌제트로 인한 회전원판 위의 벽제트유동에 관한 실험적 연구)

  • 강형석;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3386-3394
    • /
    • 1994
  • An experimental study has been performed on the flow over a rotating disk, where the diameter of the disk is 500 mm and the maximum vertical deviation of the upper surface is $50 \mu{m}$ for the whole range of the angular velocity up to 3400 rpm. The flow visualization experiment for the wall jet flow induced by impinging circular jet is carried out using schlieren system and measurements are made by 3-hole and 5-hole pitot tubes. Schlieren photographs show that as the rotating speed increases the wall jet flow becomes more stable and the size of the largest eddies becomes smaller. Measurements for impinging jet flow on the stationary disk verify the accuracy of the present experiment, and those for free rotating disk flow display the existence of transition region from laminar to turbulent flows. Measurements for impinging jet flow on the rotating disk exhibit the interaction between the wall jet and the viscous pumping effect, which explains the decay in size of turbulent eddies illustrated by the schlieren photographs.

Development of a Barrier Embedded Chaotic Micromixer (배리어가 포함된 카오스 마이크로 믹서의 개발)

  • 김동성;이석우;권태헌;이승섭
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2004
  • It is of great interest to enhance mixing performance in a microchannel in which the flow is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved in this laminar flow regime. In this regard, we present a new chaotic passive micromixer, named Barrier Embedded Micromixer (BEM), of which the mixing mechanism is based on chaotic flows. In BEM, chaotic flow is induced by periodic perturbation of the velocity field due to periodically inserted barriers along the channel wall while a helical type of flow is obtained by slanted grooves on the bottom surface of the channel in the pressure driven flow. To experimentally compare the mixing performance, a T-microchannel and a microchannel with only slanted grooves were also fabricated. All microchannels were made of PDMS (Polydimethylsiloxane) from SU-8 masters that were fabricated by conventional photolithography. Mixing performance was experimentally characterized with respect to an average mixing intensity by means of color change of phenolphthalein as pH indicator. It was found that mixing efficiency decreases as Re increases for all three micromixers. Experimental results obviously indicate that BEM has better mixing performance than the other two. Chaotic mixing mechanism, suggested in this study, can be easily applied to integrated microfluidic systems , such as Micro-Total-Analysis-System, Lab-on-a-chip and so on.

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

A Study of Thermal and Chemical Quenching of Premixed Flame by Flame-Surface Interaction (화염-표면 상호작용에 의한 예혼합 화염의 열소염 및 화학소염에 관한 연구)

  • Kim, Kyu-Tae;Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • Incomplete combustion due to quenching in a narrow confinement has been a major problem for realization of a reliable micro combustion device. In most micro combustors, effects of flows are absent in the quenching because the flow is laminar and no severe stretch is present. In such circumstance, quenching is caused either by heat loss or by removal of active radicals to the wall surface of the confinement. An experimental investigation was carried out to investigate the relative significance of these two causes of quenching of a premixed flame. A premixed jet burner with a rectangular cross section at the exit was built. At the burner exit, the flame stands between two walls with adjustable distance. The gap between the two walls at which quenching occurs was measured at different wall surface conditions. The results were analyzed to estimate the relative significance of heat loss to the wall and the removal of radicals at the surface. The measurements indicated that the quenching distance was independent of the wall surface characteristics such as oxygen vacancy, grain boundary, or impurities at low temperature. At high temperature, however, the surface characteristics strongly affect the quenching distance, implying that radical removal at the wall plays a significant role in the quenching process.

  • PDF

Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method (ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석)

  • Sung, Jaeyong;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG $k-{\varepsilon}$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray models. For the purpose of evaluation of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations (부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산)

  • 강동진;최도형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.755-761
    • /
    • 1987
  • Two-Dimensional incompressible laminar boundary layer with the reversed flow region is computed using the parially parabolized Navier-Stokes equations in primitive variables. The velocities and the pressure are explicity coupled in the difference equation and the resulting penta-diagonal matrix equations are solved by a streamwise marching technique. The test calculations for the trailing edge region of a finite flat plate and Howarth's linearly retarding flows demonstrate that the method is accurate, efficient and capable of predicting the reversed flow region.