• 제목/요약/키워드: Laminar Vortex

검색결과 117건 처리시간 0.028초

상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구 (A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge)

  • 김윤제
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.

평면 충돌제트의 불안정 특성(1) -슬릿음- (Characteristics of Plane Impinging Jets(1) - Slit-tone -)

  • 권영필
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.50-55
    • /
    • 2004
  • In this study, slit-tones by plane impinging jet are investigated experimentally over the whole subsonic flow range, especially at low speeds, in order to obtain the instability behaviour of impinging plane jet. Slit-tones are generated at low speeds associated with laminar shear layer instability as well as at high speeds associated with turbulent instability. Most of low-speed slit-tones are induced by symmetric mode instability unless the slit is not so wide, in which case antisymmetric modes are induced like edge-tones. It is found that the frequencies at low speeds ate controled by the unstable condition of the vortex at the nozzle exit and its pairings by which the frequencies are decreased by half. In the case of symmetric modes related with low-speed slit-tones, frequencies lower than those associated with one-step pairings are not found.

구(球) 주위 난류유동의 정량적 가시화 (Flow Visualization of Turbulent Flow around a Sphere)

  • 장영일;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

돌출된 표면위의 층류유동에 대한 전산 해석적 연구 (II) - 위상학적, 기구학적 연구 - (Numerical Study of Laminar Flow over a Protruding Surface (II) - Topological and Kinematical Studies -)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1426-1433
    • /
    • 1999
  • Topological and kinematical studies of the singular points found in flows around a surface-mounted cube in a channel are presented. Numerical simulation was carried out using high-resolution grid systems. Singular points(saddles and nodes) were found around the cube, which satisfy the topological rules suggested by Hunt et al. As the Reynolds number increases, the structure of vortices around the cube becomes complex and the number of singular points increases. Nevertheless, the rule governing the numbers of singular points is still valid. This confirms that our simulation is correct from topological and kinematical point of view, and enables one to infer complex flow patterns in our simulation.

Large Amplitude Heave and Roll Simulations by the Chimera RANS Method

  • Kang, Chang-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2001
  • An oscillating body motion with extremely large amplitude has been studied using the viscous flow solver. Time simulations of oscillating ship hull in prescribed heave and roll motions are presented using RANS method with FAM approach (Chen, 1995). For viscous flows, laminar flow and turbulent flow with $textsc{k}$-$\varepsilon$ model are considered and compared. The viscous flow solver of RANS method is performed together with a Chimera type of multi-block grid system to demonstrate the advantage of accurate and efficient zonal approach. In the present study, effects of viscosity and oscillation degree are discussed using Re=1000 and Re=1000000. Large motion of oscillating body shows clear vortex propagation that is not possible for inviscid flow to present.

  • PDF

큰 에디 모사 기법을 이용한 초기 천이 경계층 유동 및 방사 소음 해석 (A study on the early stage of a transitional boundary layer and far field noise using a large eddy simulation technique)

  • 최명렬;최해천;강신형
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.779-792
    • /
    • 1997
  • Flow characteristics are numerically investigated when a packet of waves consisting of a Tollmien-Schlichting wave and a pair of Squire waves evolves in a flat-plate laminar boundary layer using a large eddy simulation with a dynamic subgrid-scale model. Characteristics of early stage transitional boundary layer flow such as the .LAMBDA. vortex, variation of the skin friction and backscatter are predicted. Smagorinsky constants and the eddy viscosity obtained from the dynamic subgrid-scale model significantly change as the flow evolves. Far Field noise radiated from the transitional boundary layer shows the dipole and quadrupole characteristics owing to the wall shear stress and the Reynolds stresses, respectively.

관내 유동 플라스틱 슬러리의 열전달 특성 (Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

공동을 지나는 비정상 유동에 의한 소음 방사 해석 (Numerical Investigation of Sound Generation in the Flow Past a Cavity)

  • 허대영;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF

공조기 실외기 그릴 소음 예측 (Prediction of Noise Radiation induced by Grille of the Airconditioning Appliance)

  • 심인보;허대녕;정춘면;이덕주;김창준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1386-1392
    • /
    • 2000
  • This paper presents a new prediction method of radiated noise from grille of the airconditioning appliance. Laminar vortex sheddings behind a circular cylinder are simulated by solving two dimensional unsteady incompressible Navier-Stokes equation. The Finite Elements Method(FEM) and unstructured grid generation technique are applied to solve, the unsteady lift/drag coefficients are obtained to compute far-field noise using Lighthill's acoustic analogy. Grille is divided into some cylinder segments, and radiated noise from grille is obtained by summing noise generated from each segment. The effects of changing cross section of cylinder and grille geometry are studied. And sound pressure levels radiated from typical H-type grille are measured in KAIST anechoic wind tunnel at various inflow conditions and compared with numerical predictions.

  • PDF

박리유동장에서 저속 익형의 공기역학적 성능해석 (An Aerodynamic Performance Analysis of the Low-Speed Airfoils in Seperated Flow Field)

  • 유능수
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.153-168
    • /
    • 1995
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the subsonic airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid-incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid-compressible flow analysis. The Goradia's integral method and the Truckenbrodt integral method are adopted for the boundary layer analysis of the laminar flow and the turbulent flow respectively. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. And the analysis of the seperated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered and its geometry expressed by the formula of Summey & Smith when no seperation occurs. A computational efficiency is verified by the comparison of the computational results with experimental data and by the shorter execution time.

  • PDF