• 제목/요약/키워드: Laminar Burning Velocities

검색결과 31건 처리시간 0.022초

성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도 (Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling)

  • 배상수;김용태;임재만;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

에틸렌 첨가에 따른 메탄 화염점파속도와 화학반응 메카니즘 비교 및 선형, 비선형 모델 평가 (Comparison of Laminar Burning Velocity of CH4/C2H4/Air Mixtures with Consideration of Chemical Mechanism)

  • 반규호;양재영;박정;권오붕;이대근;김승곤;곽영태;노동순;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.165-168
    • /
    • 2015
  • To measure laminar burning velocity in methane/air/ethylene mixture flame, propagating centrally ignited spherical premixed flame to radial direction was measured by high-speed schlieren images with elevated pressure. In this study, The experimentally measured unstretched laminar burning velocities of methane was compared with GRI mech 3.0 to validate experimental data and choose the radius range, respectively. numerical prediction using the PREMIX code with GRI mech 3.0, USC mech II,, and Wang mech were evaluated through comparison with experimental burning velocity with consideration of extrapolation on linear/nonlinear model.

  • PDF

산소부화화염내 CO2의 열 및 화학적 효과에 대한 연구 (Investigation on Thermal and Chemical Effects of CO2 in Oxygen Enriched Flame)

  • 금성민;이창언;한지웅
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.617-624
    • /
    • 2005
  • An analysis of the effects of $CO_{2}$ on fundamental combustion characteristics was performed in Oxygen enriched condition by comparing the laminar burning velocities, flame structures, fuel oxidation paths. Fictitious $CO_{2}$ was introduced to discriminate the chemical reaction effects of $CO_{2}$ from the thermal effects. PREMIX code was utilized to evaluate the laminar burning velocities. OPPDIF code was utilized to investigate the flame structure and fuel oxidation path variation. The contributions of thermal effects on laminar burning velocities are dominant at lowly oxygen-enriched condition but those of chemical reaction effects become dominant at highly oxygen-enriched condition. Chemical reaction effects caused the additional flame temperature decrease besides thermal effects and oxygen-leakage increase in non-premixed flame. Specific fuel oxidation path and CO production path is enhanced in spite of overall decrement of fuel consumption rate by chemical reaction effects of$CO_{2}$.

디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구 (Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames)

  • 송원식;박정;권오붕;윤진한;길상인
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.

Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations

  • Ennetta, Ridha;Yahya, Ali;Said, Rachid
    • Advances in Energy Research
    • /
    • 제4권3호
    • /
    • pp.213-221
    • /
    • 2016
  • The main purpose of this work is to test the validation of use of a four step reaction mechanism to simulate the laminar speed of hydrogen enriched methane flame. The laminar velocities of hydrogen-methane-air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of different composition of hydrogen-methane-air mixtures (from 0% to 40% hydrogen) have been calculated for variable equivalence ratios (from 0.5 to 1.5) using the flame propagation module (FSC) of the chemical kinetics software Chemkin 4.02. Our results were tested against an extended database of laminar flame speed measurements from the literature and good agreements were obtained especially for fuel lean and stoichiometric mixtures for the whole range of hydrogen blends. However, in the case of fuel rich mixtures, a slight overprediction (about 10%) is observed. Note that this overprediction decreases significantly with increasing hydrogen content. This research demonstrates that reduced chemical kinetics mechanisms can well reproduce the laminar burning velocity of methane-hydrogen-air mixtures at lean and stoichiometric mixture flame for hydrogen content in the fuel up to 40%. The use of such reduced mechanisms in complex combustion device can reduce the available computational resources and cost because the number of species is reduced.

구형 전파화염에서 SNG 연료의 층류연소속도와 마크스타인 길이 측정에 관한 연구 (A Study on Measurement of Laminar Burning Velocity and Markstein Length of SNG Fuel in Spherical Propagation Flame)

  • 송준호;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.67-75
    • /
    • 2019
  • An experimental study was conducted to measure laminar burning velocity and Markstein length of SNG fuel with 3% of hydrogen contents from spherical propagating flames at normal and elevated initial pressure. These results were compared with numerical calculations by Premix code with GRI-mech 3.0, USC II and UC San Diego to provide suitable mechanism for SNG fuel. As a result of this work, it was found that the burning velocities and Markstein lengths of SNG fuel decrease with increase of initial pressure regardless of equivalence ratio. In addition, numerical calculations with GRI-mech 3.0 were coincided with experimental results.

넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구 (A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames)

  • 정병규;이기만
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구 (Experimental Study on Role of Syngas Addition on Flame Propagation and Stability in DME-Air Premixed Flames)

  • 송원식;박정;권오붕;윤진한;길상인;김태형;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.207-209
    • /
    • 2012
  • The present experiment was conducted to measure the unstretched laminar burning velocity and cellular instability of DME-air and syngas (in steps of 25 %) added DME-air premixed flames using propagating spherical flame. The experimental results were discussed in two focuses which are effects of syngas fraction and initial pressure on Markstein length, unstretched laminar burning velocities, and cellular instability. The flame instability was evaluated by the Markstein length and cellularity which is caused by diffusional-thermal instability and hydrodynamic instability.

  • PDF

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • ;박정;권오붕;김정수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF