• Title/Summary/Keyword: Lagrangian dynamics

Search Result 111, Processing Time 0.023 seconds

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

A reliability-based criterion of structural performance for structures with linear damping

  • Kovaleva, Agnessa
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.313-320
    • /
    • 2006
  • The reliability analysis of structures subjected to stochastic loading involves evaluation of time and probability of the system's residence in a reference domain. In this paper, we derive an asymptotic estimate of exit time for multi-degrees-of-freedom structural systems. The system's dynamics is governed by the Lagrangian equations with linear dissipation and fast additive noise. The logarithmic asymptotic of exit time is found explicitly as a sum of two terms dependent on kinetic and potential energy of the system, respectively. As an example, we estimate exit time and an associated structural performance for a rocking structure.

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.662-667
    • /
    • 2005
  • Nonlinear dynamics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi field layer wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap through piezoelectric potentials and the load path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

  • PDF

Modelling the dispersion of a tracer gas in the wake of an isolated low-rise building

  • Quinn, A.D.;Wilson, M.;Reynolds, A.M.;Couling, S.B.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2001
  • Mean concentrations of ammonia gas released as a tracer from an isolated low-rise building have been measured and predicted. Predictions were calculated using computational fluid dynamics (CFD) and two dispersion models: a diffusion model and a Lagrangian particle tracking technique. Explicit account was taken of the natural variation of wind direction by a technique based on the weighted summation of individual steady state wind direction results according to the probability density function of the wind direction. The results indicated that at distances >3 building heights downstream the weighted predictions from either model are satisfactory but that in the near wake the diffusion model is less successful. Weighted solutions give significantly improved predictions over unweighted results. Lack of plume spread is identified as the main cause of inaccuracies in predictions and this is linked to inadequate resolution of flow features and mixing in the CFD model. Further work on non-steady state simulation of wake flows for dispersion studies is recommended.

A New Dynamic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 운동방정식 해석)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1820-1828
    • /
    • 2001
  • The dynamics of the 6-3 Stewart platform manipulator (SPM) is newly derived based on the kinematic relations particularly developed fur the SPM. The essence of the analysis is to deal with three subsystems of the SPM, each consisting of the command and feedback line links associated with two joined neighboring actuators. The dynamics of the command and feedback line links are first formulated using Lagrange and Newton-Euler method and then combined to derive the dynamic equations of motion fur the SPM. The derived nonlinear equations of motion are so computationally effective that it can be easily applied to real-time high-speed tracking control of 6-3 SPM.

Integrated Roil-Pitch-Yaw Autopilot Design for Missiles

  • Kim, Yoon-Hwan;Won, Dae-Yeon;Kim, Tae-Hun;Tahk, Min-Jea;Jun, Byung-Eul;Lee, Jin-Ik;An, Jo-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.129-136
    • /
    • 2008
  • An roll-pitch-yaw integrated autopilot for missiles is designed for compensation of dynamics coupling. The proposed autopilot is based on the classical control technique. The gains of the proposed autopilot are optimized by using co-evolutionary augmented Lagrangian method(CEALM). Several cost functions are compared in order to find feasible control gains. For a case that a bank angle of missiles is unknown, multiple models are used in the autopilot optimization. In nonlinear simulations as well as linear simulations, the proposed autopilot provided good performances.

Turbulent Particle Dispersion Effects on Electrostatic Precipitation (전기집진에서의 난류 입자 이산)

  • Choe, Beom-Seok;Fletcher C.A.J
    • 연구논문집
    • /
    • s.28
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification (CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증)

  • Kim, Hye-Min;Kwon, Sung-An;Lee, Sang-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Numerical Study of Ablation Phenomena of Flame Deflector

  • Lee, Wonseok;Yang, Yeongrok;Shin, Sangmok;Shin, Jaecheol
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.10-18
    • /
    • 2021
  • A flame deflector prevents a launch system from thermal damage by deflecting the exhaust flame of the launch vehicle. During the deflection of the flame, the flame deflector is subjected to a high-temperature and high-pressure flow, which results in thermal ablation damage at the surface. Predicting this ablation damage is an essential requirement to ensure a reliable design. This paper introduces a numerical method for predicting the ablation damage phenomena based on a one-way fluid-structure interaction (FSI) analysis. In the proposed procedure, the temperature and convective heat transfer coefficient of the exhaust flame are calculated using a fluid dynamics analysis, and then the ablation is calculated using a finite element analysis (FEA) based on the user-subroutine UMESHMOTION and Arbitrary Lagrangian-Eulerian (ALE) adaptive mesh technique in ABAQUS. The result of such an analysis was verified by comparison to the ablation test result for a flame deflector.