• Title/Summary/Keyword: Lagrangian concept

Search Result 41, Processing Time 0.027 seconds

Optimal channel allocation for cellular mobile system with nonuniform traffic distribution

  • Kim, Sehun;Chang, Kun-Nyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.303-312
    • /
    • 1994
  • The problem of optimally allocating available communication channels in a cellular mobile system with nonuniform traffic distribution is considered. This problem is to minimize the weighted average blocking probability subject to cochannel interference constraints. We use the concept of pattern to deal with the problem more conveniently. Using Lagrangian relaxation and subgradient optimization techniques, we obtain high-quality solutions with information about their deviations from true optimal solutions. Computational experiments show that our method works very well.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF

Flamelet Modeling of Thrbulent Nonpremixed Flames (층류화염편 모델을 이용한 난류 비예혼합 화염장 해석)

  • Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element (가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • For non-linear analysis of stiffened shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account second order rotational terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. The post-buckling behaviors of stiffened shell structures are traced by modeling the stiffener as a shell element and considering general transformation between the main structure and the stiffener at the connection node. Numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references' results.

  • PDF

Numerical Simulation on the Free Surface using implicit boundary condition (내재적 경계 조건을 이용한 자유표면 유동 수치해석)

  • Lee G. H.;Baek J. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Effect of the Statistical Droplet Parcel on Numerical Simulation of Sprinkler Spray (스프링클러 분무 해석에 영향을 미치는 통계적액적군집의 영향)

  • Kim, Sung-Chan;Lee, Sang-Woo;Park, Won-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.363-370
    • /
    • 2008
  • The present study has been performed to investigate the effect of statistical number of droplets on the simulation of the sprinkler spray using fire field model. In order to simulate the sprinkler spray characteristics, the present study uses NIST Fire Dynamics Simulator version 5.2. A group of Lagrangian particle with similar droplet characteristics, such as diameter, velocity, temperature and so on, is represented by parcel concept to decrease the total number of droplets tracked in the simulation. The present study introduces a new parameter to represent the ratio between real number of droplets and computational parcels. The dependency of the number of parcels on the fire suppression characteristics and spray patterns is quantitatively examined for different ratio between the real number of droplets and computational parcels.

  • PDF

Geometrically nonlinear elastic analysis of space trusses

  • Tin-Loi, F.;Xia, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.345-360
    • /
    • 1999
  • A general framework for the nonlinear geometric analysis of elastic space trusses is presented. Both total Lagrangian and finite incremental formulations are derived from the three key ingredients of statics, kinematics and constitutive law. Particular features of the general methodology include the preservation of static-kinematic duality through the concept of fictitious forces and deformations, and an exact description for arbitrarily large displacements, albeit small strain, that can be specialized to any order of geometrical nonlinearity. As for the numerical algorithm, we consider specifically the finite incremental case and suggest the use of a conventional, simple and flexible arc-length based method. Numerical examples are presented to illustrate and validate the accuracy of the approach.

A Study on the Shape Finding of Cable-Net Structures Introducing General Inverse Matrix (일반역행열(一般逆行列)을 이용(利用)한 케이블네트 구조물(構造物)의 형상결정에 관한 연구)

  • Sur, Sam-Uel;Lee, Jang-Bok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.75-84
    • /
    • 2002
  • In this study, the 'force density method' for shape finding of cable net structures is presented. This concept is based on the force-length ratios or force densities which are defined for each branch of the net structures. This method renders a simple linear 'analytical form finding' possible. If the free choice of the force densities is restricted by further condition, the linear method is extended to a nonlinear one. The nonlinear one can be applied to the detailed computation of networks. In this paper, the general inverse matrix is introduced to solve the nonlinear equilibrium equation including Jacobian matrix which is rectangular matrix. Several examples for linear and nonlinear analysis applied additional constraints are presented. It is shown that the force density method is suitable for form finding of cable net and the general inverse matrix can be applied to solve the nonlinear equation without Lagrangian factors.

  • PDF