• Title/Summary/Keyword: Lagrange equation of motion

Search Result 146, Processing Time 0.024 seconds

A Study on the Dynamic Response of Steel Highway Bridges Using 3-D Vehicle Model (3차원(次元) 차량(車輛)모델을 사용(使用)한 강도로교(鋼道路橋)의 동적응답(動的應答) 관(關)한 연구(硏究))

  • Chung, Tae Ju;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1055-1067
    • /
    • 1994
  • This paper is presented to perform linear dynamic analysis of bridges due to vehicle moving on bridges. The road surface roughness and bridge/vehicle interaction are also considered. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The road surface roughness of the roadway and bridge decks are generated from power spectral density(PSD) function for good road. The PSD function proposed by C.J. Dodds and J.D. Robson is used to describe the road surface roughness for good road condition. The vehicles are modeled as two nonlinear vehicle model with 7-D.O.F of truck and 12-D.O.F of tractor-trailer and the equations of motion of the vehicles are derived using Lagrange's equation. The main girder and concrete deck are modeled as beam and shell element, respectively and rigid link is used between main girder and concrete deck. The equations of motion of the vehicles are solved by Newmark ${\beta}$ method and the equations of the motion of the bridges are solved by mode-superposition procedures. The validity of the proposed procedure is demonstrated by comparing the results with the experimental data reported by the AASHO Road Test. The comparison shows that the agreement between experiment and theory is quite satisfactory.

  • PDF

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

A Study on Analysis of Dynamic characteristics of a High-Agility Satellite including Flexibility of a Solar panel (태양전지판의 유연성에 의한 고기동 위성의 동특성 분석 연구)

  • Kim, Yongha;Kang, Kyunghan;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Recently, there are a number of studies over dynamic analysis for minimizing vibration of flexible structures such as solar panel for agility of high-agility satellite. The traditional studies perform dynamic analysis of a solar panel assumed as rigid structure since the stiffness of solar panel is higher than the stiffness of solar panel's hinge spring. However, there are vibrations that have modes of bending and torsion when high-agility satellite rotate speedily. This vibrations result in delaying safety time of satellite or degrading image quality. This paper presents dynamic analysis's technique of satellites including the spring hinge of solar panel and flexible structural solar panel's effects described as the linear equation of motion using Lagrange's theorem, and verifies the validity of an established dynamic analysis's technique of satellites by comparing the finite element method. In addition high-agility satellite's dynamic characteristics of a torque profile are analyzed from the established dynamic analysis's technique of satellites.

Minimum dynamic response of cantilever beams supported by optimal elastic springs

  • Aydin, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.377-402
    • /
    • 2014
  • In this study, optimal distribution of springs which supports a cantilever beam is investigated to minimize two objective functions defined. The optimal size and location of the springs are ascertained to minimize the tip deflection of the cantilever beam. Afterwards, the optimization problem of springs is set up to minimize the tip absolute acceleration of the beam. The Fourier Transform is applied on the equation of motion and the response of the structure is defined in terms of transfer functions. By using any structural mode, the proposed method is applied to find optimal stiffness and location of springs which supports a cantilever beam. The stiffness coefficients of springs are chosen as the design variables. There is an active constraint on the sum of the stiffness coefficients and there are passive constraints on the upper and lower bounds of the stiffness coefficients. Optimality criteria are derived by using the Lagrange Multipliers. Gradient information required for solution of the optimization problem is analytically derived. Optimal designs obtained are compared with the uniform design in terms of frequency responses and time response. Numerical results show that the proposed method is considerably effective to determine optimal stiffness coefficients and locations of the springs.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation (공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구)

  • Shin, Haeng-Bong;Cha, BO-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.