• Title/Summary/Keyword: Lactobacillus sp.

Search Result 264, Processing Time 0.02 seconds

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Clostridium difficile-associated Intestinal Disease and Probiotics

  • Yun, Bohyun;Lee, Sang Dae;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Probiotics are traditionally defined as viable microorganisms that have a beneficial effect in the prevention and treatment of pathologic conditions when they are ingested. Although there is a relatively large volume of literature that supports the use of probiotics to prevent or treat intestinal disorders, the scientific basis behind probiotic use has only recently been established, and clinical studies on this topic are just beginning to get published. Currently, the best studied probiotics are lactic acid bacteria, particularly Lactobacillus and Bifidobacterium species. Other organisms used as probiotics in humans include Escherichia coli, Streptococcus sp., Enterococcus sp., Bacteroides sp., Bacillus sp., Propionibacterium sp., and various fungi, and some probiotic preparations contain more than one bacterial strain. Probiotic use for the prevention and treatment of antibiotic-associated diarrhea caused by Clostridium difficile induced intestinal disease as well as for other gastrointestinal disorders has been discussed in this review.

  • PDF

Physiological Characterization of Lactobacillus sp. JK-8 Isolated from Shrimp Aquaculture Pond (새우양식장에서 분리한 Lactobacillus sp. JK-8의 생리적 특성)

  • Chun Jae-Woo;Ma Chae-Woo;Oh Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • The purpose of this work was to investigate the physiological characteristics of Lactobacillus sp. JK-8 isolated from a shrimp aquaculture pond. The strain JK-8 was grown on MRS media, and morphological and physiological characteristics of the strain were examined. The bacterium was identified as a strain of the genus Lactobacillus on the basis of BIOLOG test. Strain JK-8 produced both lactic acid and acetic acid, which were responsible for the pH decrease during growth. Concentrations of lactic acid and acetic acid increased to 192.8 mM and 43.6 mM, respectively, and the initial pH 7.0 of the cultures decreased to 3.8 at the end of incubaction. The bacteriocidal effect against eight target bacteria was examined with 5-fold concentrated culture supernatants. All bacteria tested in this work were completely killed within 3 hrs after treatment with the culture supernatant. The bacteriocidal effects were clearly observed, only when the pH of the culture supernatants were not adjusted. HPLC was used to reslove lactic acid and acetic acid in the culture solution, and GC-MS was used to verify the metabolites.

Characterization of Antimicrobial Substance Produced by Lactobacillus sp. HN 235 Isolated from Pig Intestine (돼지 장관으로부터 분리한 Lactobacillus sp. HN 235 균주가 생산하는 항균물질의 특성)

  • Shin, Myeong-Su;Han, Sun-Kyung;Choi, Ji-Hyun;Ji, Ae-Ran;Kim, Kyeong-Su;Lee, Wan-Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • In order to develop probiotics which may be a viable alternative of antibiotic use in pig industry, five bacterial strains (Lactobacillus sp. HN 52, 92, 98, 235 and AP 116) possessing antimicrobial properties were selected from 500 strains isolates of pig intestines. The bacteriocin produced by Lactobacillus sp. HN 235 displayed a relative broad spectrum of inhibitory activity against all Enterococcus strains, Pseudomonas aeruginosa, Listeria monocytogenes and Clostridium perfringens using the spot-on-lawn method. The production of antimicrobial substance started in the middle of the exponential growth phase, reached maximum levels (6,400 AU/mL) in the stationary phase, and then declined. Bacteriocin activity remained unchanged after 30 min of heat treatment at $95^{\circ}C$ and stable from pH 2.0 to 10 for 1 h, or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.

Effect of ginger and cinnamon extract mixtures on the growth of intestinal bacteria and intestinal inflammation (생강계피 복합물이 장내 유익균 증식 및 염증조절 기능에 미치는 영향)

  • Kim, Min Ju;Kim, Min Seo;Kang, Sung Tae;Kim, Ji Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.321-326
    • /
    • 2017
  • We aimed to assess the potential growth-promoting effects of ginger and cinnamon mixtures (GCM) on intestinal bacteria and their anti-inflammatory effects in a cellular model of intestinal inflammation. Bifidobacterium longum, Lactobacillus sp., and Lactobacillus acidophilus served as intestinal bacteria. Further, in the inflammatory co-culture model, Caco-2 cells co-cultured with RAW264.7 cells were treated with GCM before the addition of lipopolysaccharide (LPS) to induce inflammation in RAW264.7 cells. Addition of GCM to modified Eggerth Gagnon media at a ginger:cinnamon ratio of 1:5 increased the growth of B. longum, Lactobacillus sp., and L. acidophilus compared to that of the control. In a cellular model, compared to LPS-treated groups, GCM-treated groups maintained high transepithelial electrical resistance at ginger:cinnamon ratios of 1:1, 1:3, 1:5, and 1:7 and decreased the tight junction permeability at 3:1, 1:1, 1:3, and 1:5 ratios, similar to that shown by the control groups. In addition, GCM-treated groups showed decreased levels of nitrite at 1:1, 1:5, and 1:7 ginger:cinnamon ratios. Based on these results, it can be concluded that among the various combinations of GCM, the ginger:cinnamon ratio of 1:5 is the optimal composite ratio that shows positive effects on the intestinal beneficial bacteria and in anti-inflammation.

Production of Mannitol by Lactobacillus sp. KY-107 (Lactobacillus sp. KY-107에 의한 Mannitol의 생산)

  • 윤종원;강선철류병호송승구
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.374-379
    • /
    • 1996
  • The production of extracellular mannitot by an efficient mannitol-producing bacterium, Lactobacillus sp. KY-107 was studied in shake flask culture using the modified MRS medium. Maximum mannitol production was obtained with fructose as the sole carbon source. Within 95 hours of incubation, a final concentration of 70g/L of mannitol from 100g/L fructose was obtained with an indicated yield of 86% based on fructose consumed. However, higher concentrations of fructose could not effectively be transformed to mannitol due to a lack of osmotolerance. The strain produced no other polyols such as glycerol and sorbitol as by-products. Yeast extract was best nitrogen source and high levels of inorganic phosphate up to 10g/L did not show any detrimental effect for mannitol formation. Manganese ion played important role in both cell growth and mannitol production. The optimum culture temperature and initial pH were $35^{\circ}C$ and 6-8, respectively.

  • PDF

Change in Lactobacillus brevis GS1022 and Pediococcus inopinatus GS316 in Gajami Sikhae Fermentation (가자미 식해 발효에서 Lactobacillus brevis GS1022과 Pediococcus inopinatus GS316의 균총 변화 연구)

  • Lim, Soo-Jeong;Bae, Eun-Yeong;Seol, Min-Kyeong;Cho, Young-je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.491-500
    • /
    • 2020
  • Lactic acid bacteria are widely known to prevent and treat intestinal health conditions, heart disease, depression, and obesity. In Korea, such bacteria are commonly consumed through various fermented foods, although most are isolated from kimchi, and research on the lactic acid bacteria in fermented seafood is insufficient. This study was therefore conducted to observe changes in bacterial flora according to the culture date of lactic acid bacteria in the fermentation of traditional Korean Gajami Sikhae produced in Pohang and to isolate the bacteria of probiotic value. The bacteria were periodically isolated and identified from date of preparation to 50 days after preparation to investigate which Lactobacillus are involved in Gajami Sikhae. As fermentation progressed, it was confirmed that Pediococcus sp. and Lactobacillus sp. participate predominantly in the early and later periods of fermentation, respectively. During the entire fermentation period, 170 isolates were screened, and the following five species were found to be involved: Pediococcus pentosaceus, Pediococcus inopinatus, Leuconostoc mesenteroides, Lactobacillus brevis, and Lactobacillus plantarum. Five strains of these species were selected through acid and bile tolerance tests, and their coaggregation, autoaggregation, hydrophobicity, antibacterial, and antioxidant activities were then evaluated. As a result, it is thought that L. brevis GS1022, which has excellent digestive fluid resistance, and P. inopinatus GS316, which has excellent cohesiveness, may be useful as probiotic strains.

Anti-hypertensive Activities of Lactobacillus Isolated from Kimchi (김치에서 분리한 유산균의 항고혈압 활성)

  • Yu, Mi-Hee;Im, Hyo-Gwon;Im, Nam-Kyung;Hwang, Eun-Young;Choi, Jun-Hyeok;Lee, Eun-Ju;Kim, Jong-Boo;Lee, In-Seon;Seo, Hwa-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.428-434
    • /
    • 2009
  • This study was conducted to evaluate the anti-hypertensive effect of Lactobacillus sp. isolated from Kimchi by examining its effects on renal angiotensin-converting enzyme (ACE) inhibitory activity, lipid components and blood pressure using the spontaneously hypertensive rat (SHR) system. Most Lactobacillus sp. extracts (lysozyme, sonication and ethyl acetate extracts) showed higher capacities for the inhibition of ACE activity than those of cultured media. Particularly, LG 7, 8 and 42 of Lactobacillus sp. showed the strongest inhibitory activity among the Lactobacillus sp. extracts. The concentrations of total cholesterol and triglycerides in the serum were lower in the Lactobacillus sp. administration groups than in the control group, but these differences were not significant. The HDL-cholesterol concentrations of the LG 42 administration groups (IX, X) were significantly higher than that of the control group. At 4 weeks, the systolic blood pressure (SBP) in the LG 42 Lactobacillus sp. ($1{\times}10^9$ cfu/mL) group (XI) was about 27% lower than that of the control group (V). No adverse effects were observed on the liver and there was no difference in the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) values among groups. The results of this study suggest that long term consumption of LG 42 Lactobacillus sp. may be beneficial to the prevention of high blood pressure.

Purification and Enzyme Property of a Cell-Wall Lytic Enzyme Produced by Bacillus sp. LM-8 against Lactobacillus plantarum. (Bacillus sp. LM-8이 생산하는 Lactobacillus plantarum 용균 효소의 정제 및 효소 특성)

  • 마호우;신원철
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2002
  • Purification and characterization of enzyme property of a cell-wall lytic enzyme against Lactobacillus plantarum were carried out. Final specific activity of purified enzyme was 5.8 units/mg and purity of the enzyme was increased 8.3 fold compared with the enzyme activity in culture broth. The molecular weight of purified enzyme was estimated to be 60,000 kDa by gel filtration and SDS-polyacrylamide gel electrophoresis. Optimal pH and temperature for the activity of this enzyme were 3.0 and 4$0^{\circ}C$, respectively. The cell-wall lytic enzyme activity was maintained at 3$0^{\circ}C$ when treating the enzyme for 30 mins, whereas the activity was decreased to 80% of the maximum level at 4$0^{\circ}C$ The enzyme activity exhibited good stability at the range of pH 4~7.

Effect of sword bean (Canavalia ensiformis) fermentation filtrate on the antioxidant, anti-inflammatory, and antimicrobial activities (작두콩(Canavalia ensiformis) 발효액이 항산화, 항염증 및 항균 활성에 미치는 영향)

  • Hye-Lim Jang
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1072-1081
    • /
    • 2023
  • In the present study, various experiments were performed to evaluate the biological activities, such as the antioxidant, anti-inflammation, and antimicrobial activities of sword bean (Canavalia ensiformis) fermentation filtrate by Lactobacillus plantarum (L. plantarum) and Lactobacillus brevis (L. brevis). Total polyphenol (TPC) and flavonoid contents (TFC) of sword bean were significantly decreased after fermentation regardless of Lactobacillus sp. (p<0.05). The DPPH radical scavenging activity of sword beans also decreased after fermentation. However, nitric oxide (NO) radical scavenging activity conspicuous increased after fermentation (p<0.001) in a treated concentration-dependent manner, and the effect for L. brevis was higher than for L. plantarum. In addition, the sword bean fermentation filtrate showed a strong inhibitory effect against Pseudomonas aeruginosa, Staphylococcus sp., and Escherichia coli. Cell cytotoxicity was not exhibited in all experimental groups (data not shown). These findings suggest that the sword bean fermentation filtrate may be used effectively in various industries due to its high anti-inflammatory and antimicrobial activities.