• Title/Summary/Keyword: Lactobacillus plantarum fermentation

Search Result 379, Processing Time 0.027 seconds

Improvement of colitis preventive effects of Gochujang by addition of Lactobacillus plantarum on C57BL/6 mice (Lactobacillus plantarum 첨가 고추장의 C57BL/6 마우스에서 대장염 예방 증진효과)

  • Park, Eui-Seong;Heo, Ju-Hee;Lim, Yaung-Iee;Ju, Jaehyun;Park, Kun-Young
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1188-1194
    • /
    • 2017
  • Gochujang, a traditional Korean food, is fermented by mixing red pepper powder, various grain, meju and salt. Changes in the kind of ingredients and fermentation method could increase health functionalities. In this study, in vivo anti-colitis effects of gochujang prepared with mixed grains, bamboo salt baked 3 times and meju starters on DSS-induced colitis in C57BL/6 mice were studied. We prepared gochujang prepared with mixed grains (MG), bamboo salt, and Aspergillus oryzae (A) and Baccillus subtilis (B) mixed starters (MG-AB) and gochujang prepared with MG, bamboo salt and A, B and Lactobacillus plantarum (L) mixed starters (MG-ABL). MG-AB and MG-ABL significantly increased body weight and colon length compared to the control (p<0.05). MG-ABL showed significantly decreased interleukin-6 (IL-6) expression in serum compared to the control and MG-AB group (p<0.05). MG-ABL also regulated mRNA and protein levels of pro-apoptotic Bcl-2-associated X protein (Bax) and anti-apoptotic B-cell lymphoma-2 (Bcl-2) in the mice colon tissue (p<0.05). Therefore, MG-ABL exhibited the increased anticolitis effects by inhibiting damage of colon tissue, probably by regulating a pro-inflammatory cytokine of IL-6 and regulated apoptosis related genes. These results indicated that gochujang changed with good ingredients and starters had colitis preventive effects and might be due to active compounds in mixed grain and bamboo salt, and produced by L during the fermentation of gochujang.

Evaluation of Fermentation Ability of Microbes for Corn Silage Inoculant (옥수수 사일리지용 미생물의 발효능력 평가)

  • Kim, Jong-Geun;Ham, Jun-Sang;Chung, Eui-Soo;Seo, Sung;Park, Hyung-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • Corn is very important forage in Korea. The great part of them is utilized as silage. Generally, it contains a lot of grains that is feed of animal. This experiment was conducted to evaluation of fermentation ability of microbes for corn silage inoculant. Good lactic acid bacteria were isolated from good corn silage by plating MRS agar containing 0.02% sodium azide, and assessed by growing and acid producing ability in MRS broth. Six lactic acid bacteria were selected, and were found to be Gram positive, rods and catalase negative and were identified to be lactobacillus plantarum (C3-2, B13-1, CC9-1), Lactobacillus fermentum (C11-4), Lactobacillus paracasei (B14-1), and Leuconostoc lactis (A3-1) on the basis of the biochemical characteristics and utilization of substrates. Corn was ensiled at ripen stage following treatment with selected five lactic acid bacteria, two commercial inoculant, and no additive (control). After 2 month, B13-1 and CC9-1 bacteria inoculated silage were lower pH and higher lactic acid content than others treatments. The Flieg's score and grade of B13-1 and CC9-1 bacteria treated silage were higher than commercial inoculant. According to this experiment, lactobacillus plantarum B13-1 and CC9-1 strain were recommendable for good inoculant of corn silage.

Anti-inflammatory Activities of Cold Brew Coffee Using Dry Fermentation of Lactobacillus plantarum (건식발효를 이용한 유산균 더치 커피의 항염증 효과)

  • Go, Seok Hyeon;Monmai, Chaiwat;Jang, A Yeong;Lee, Hyungjae;Park, Woo Jung
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.337-343
    • /
    • 2018
  • Coffee is a commonly consumed beverage that contains anti-inflammatory compounds such as caffeine, chlorogenic acid, cafestol, trigonelline, and kahweol. Lactobacillus plantarum is a lactic acid bacterium most frequently used in the fermentation of food products of plant origin. L. plantarum is able to degrade some food phenolic compounds and provide high value-added compounds such as powerful antioxidants or food additives approved as flavouring agents. In this study, we investigated the anti-inflammatory effects of coffee extract fermented by L. plantarum on RAW264.7 macrophages. In lipopolysaccharide-stimulated RAW264.7 cells, these coffee extracts exhibited anti-inflammatory activities through the reduction of nitric oxide (NO) production and inducible NO synthase expression. Fermented coffee extracts significantly decreased the expression of inflammatory cytokines such as tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, and interferon ${\gamma}$. Cyclooxygenase-2, which is one of the key biomarkers for inflammation, was significantly suppressed. These results might be helpful for understanding the anti-inflammatory mechanism of fermented coffee extract on immune cells and, moreover, suggest that fermented coffee extract may be a beneficial anti-inflammatory agent.

Effect of Lactic Acid Bacteria Inoculation on Fermentation Characteristics of Whole Crop Barley Silage

  • Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Vijayakumar, Mayakrishnan;Park, Hyung Soo;Lee, Kyung Dong;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.201-206
    • /
    • 2015
  • An experiment was carried out to determine the homofermentative activity of Lactobacillus plantarum KCC-10 and KCC-19 on the ensiling of whole crop barley (WCB). The crude protein in the silages was slightly higher in the KCC-10 and KCC-19 treatments compared to the control, but there was no significant difference between the two inoculant-treated silages. Nutrient parameters such as acid detergent fiber, neutral detergent fiber and in vitro dry matter digestibility in L. plantarum KCC-10 and KCC-19 treated silages did not differ from those in the control silage. The lactic acid content increased in KCC-10 and KCC-19 treated silage when compared with the control silage but the contents of acetic acid and butyric acid produced in KCC-10 and KCC-19 treated silages were similar with the control silage. Further, the number of lactic acid bacteria (LAB) in KCC-10 treated silage demonstrated a significant increase when compared to the control. Especially, KCC-19 treated silage showed greater lactic acid bacterial growth potential. Other microbes such as yeast and fungi were not detected in KCC-10 and KCC-19 treated WCB silages. Hence, this study suggests that the addition of L. Plantarum KCC-10 and KCC-19 to the WCB silage can improve fermentation quality for the production of high-quality silage.

Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum (오미자(Schizandra chinensis) 열매 추출물의 Lactobacillus plantarum 젖산발효를 통한 고농도 GABA 함유 발효음료 제조)

  • Lee, Hyo-Seon;Kwon, Soon-Young;Lee, Syng-Ook;Lee, Sam-Pin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.326-334
    • /
    • 2016
  • Omija (Schizandra chinensis) extract (OE) was fermented by using Lactobacillus plantarum EJ2014 to produce a beverage fortified with gamma-aminobutyric acid (GABA). After 2 days of fermentation in the presence of 2% monosodium glutamate (MSG) and 0.5% yeast extract (YE), the four-fold-diluted OE showed a higher viable cell count ($2.2{\times}10^9CFU/mL$) and lower acidity (1.2%) than that of the unfermented OE. In particular, addition of MSG as a precursor resulted in a small increase in the initial pH. MSG (2%) was completely converted to GABA (0.92%) during lactic acid bacteria fermentation for 3 days. Furthermore, the acidity of the fermented OE decreased from 1.74% to 0.56%. In addition, the original red color of the OE disappeared during LAB fermentation. However, when the fermented OE was mixed with 50% of the original OE, the original red color was recovered, with 19.56 and 13.92 for Hunter L and a values, respectively. The mixture of 50% original OE and 50% fermented OE showed the highest sensory score including the highest overall preference. In conclusion, the OE fortified with GABA and probiotics was produced by fermentation with a static culture, L. plantarum EJ2014.

Anti-diabetic effect of mulberry leaf extract fermented with Lactobacillus plantarum (Lactobacillus plantarum으로 발효한 뽕잎 추출물의 항당뇨 효과)

  • Choi, Jisu;Lee, Sulhee;Park, Young-Seo
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.191-199
    • /
    • 2020
  • The purpose of this study was to isolate novel lactic acid bacteria to ferment mulberry leaf extract (MLE) and to investigate its anti-diabetic effect. Lactobacillus plantarum SG-053 isolated from gatkimchi was selected to ferment MLE because it exhibited high α-glucosidase inhibitory activity (96.8%) and enhanced the content of 1-deoxynojirimycin (DNJ), an anti-diabetic substance, in fermented MLE up-to 2.2 times. MLE fermented with L. plantarum SG-053 (FMLE) showed growth promoting activity against L6 myotubes and increased the gene expressions of IRS-1, PI3K p85α, and GLUT-4 up-to 1.4, 2.2, and 1.4 times, respectively, and 2-deoxyglucose uptake up-to 40.7%. In rat skeletal muscle tissue, the expressions of PI3K p85α and GLUT-4 increased by 6.4 and 2.1 times, respectively. These results suggest that L. plantarum SG-053 could enhance the DNJ content of MLE by fermentation and that FMLE is effective in ameliorating insulin resistance via activation of the insulin signaling pathway.

Basic Physiological Activities of Bifidobacterium infantis Maeil-K9 and Lactobacillus plantarum KCTC3099 Selected by Anticarcinogenic Activities. (항암 활성능이 우수한 Bifidobacterium infantis Mneil-K9과 Lactobacillus plantarum KCTC3099의 기초 생리활성)

  • 김응률;정병문;김지연;김서영;정후길;이형주;전호남
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.348-354
    • /
    • 2003
  • This study was conducted to confirm the availability of lactic acid bacteria as probiotics haying inhibitory effects to cancer cell line. Five lactic acid bacteria showing anti-cancer activity were compared by acid tolerance, bile tolerance, antibiotics resistance, milk fermentation, stability, and cell adherence activity to colon epithelial cell. The results obtained are as follows : In acid tolerance, all strains did not have a resistance below pH 3.0 and 3.5 except Lactobacillus plantarum KCTC3099. In antibiotics resistance, Lactococcus lactis and L. plantarum KCTC3099 were resistant to cotrimoxazol (128 mg/1), and Bifidobacterium adolescentis Maeil-K8 and B. infantis Maeil-K9 were resistant to doxycylin and gentamycin (4 mg/1). In case of cell adherence ability to Caco-2 cell, B. infantis Maeil-K9 was found to be superior to others as 3.1%, while the others were less than 0.5%. When the strains were cultured to milk base, viable counts of the strains tested increased more 1 log cycle than inoculation, but acid production was very low except L. plantarum KCTC3099. Also, L. plantarum KCTC3099, B. adolescentis Maeil-K8, and B. infantis Maeil-K9 were stable in fermented milk base during storage. In conclusion, L. plantarum KCTC3099 and B. infantis Maeil-K9 were confirmed to be superior for the availability as probiotics.

Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

  • Wu, Jing-Jing;Du, Rui-Ping;Gao, Min;Sui, Yao-Qiang;Xiu, Lei;Wang, Xiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.648-657
    • /
    • 2014
  • Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Fermentation-Mediated Enhancement of Ginseng's Anti-Allergic Activity against IgE-Mediated Passive Cutaneous Anaphylaxis In Vivo and In Vitro

  • Hwang, Seon-Weon;Sun, Xiao;Han, Jun-Hyuk;Kim, Tae-Yeon;Koppula, Sushruta;Kang, Tae-Bong;Hwang, Jae-Kwan;Lee, Kwang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1626-1634
    • /
    • 2018
  • Ginseng (the root of Panax ginseng Meyer) fermented by Lactobacillus plantarum has been found to attenuate allergic responses in in vitro and in vivo experimental models. Ginseng has been reported to also possess various biological functions including anti-inflammatory activity. The present study was aimed at comparing the anti-allergic effect of ginseng and fermented ginseng extracts on IgE-mediated passive cutaneous anaphylaxis in vitro in a murine cell line and in vivo in mice. Fermented ginseng extract (FPG) showed higher inhibitory effect against in vitro and in vivo allergic responses when compared with ginseng extract (PG). The secretion of ${\beta}$-hexosaminidase and interleukin (IL)-4 from the IgE-DNP-stimulated RBH-2H3 mast cells were significantly (p < 0.05) inhibited by FPG treatment, and this effect was concentration-dependent. Further, MKK4 activation and subsequent JNK phosphorylation were attenuated by FPG treatment. The inhibitory effect of FPG on the in vitro allergic response was verified in vivo against IgE-DNP-induced passive cutaneous anaphylaxis in a mouse model. These data indicated that the fermentation of ginseng with L. plantarum enhanced its anti-allergic effects both in vitro and in vivo. We predict that compositional changes in the ginsenosides caused by the fermentation may contribute to the change in the anti-allergic effects of ginseng. The results of our study highlight the potential of the use of FPG as a potential anti-allergic agent.