• Title/Summary/Keyword: Lactobacillus plantarum KCTC3099

Search Result 5, Processing Time 0.02 seconds

Basic Physiological Activities of Bifidobacterium infantis Maeil-K9 and Lactobacillus plantarum KCTC3099 Selected by Anticarcinogenic Activities. (항암 활성능이 우수한 Bifidobacterium infantis Mneil-K9과 Lactobacillus plantarum KCTC3099의 기초 생리활성)

  • 김응률;정병문;김지연;김서영;정후길;이형주;전호남
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.348-354
    • /
    • 2003
  • This study was conducted to confirm the availability of lactic acid bacteria as probiotics haying inhibitory effects to cancer cell line. Five lactic acid bacteria showing anti-cancer activity were compared by acid tolerance, bile tolerance, antibiotics resistance, milk fermentation, stability, and cell adherence activity to colon epithelial cell. The results obtained are as follows : In acid tolerance, all strains did not have a resistance below pH 3.0 and 3.5 except Lactobacillus plantarum KCTC3099. In antibiotics resistance, Lactococcus lactis and L. plantarum KCTC3099 were resistant to cotrimoxazol (128 mg/1), and Bifidobacterium adolescentis Maeil-K8 and B. infantis Maeil-K9 were resistant to doxycylin and gentamycin (4 mg/1). In case of cell adherence ability to Caco-2 cell, B. infantis Maeil-K9 was found to be superior to others as 3.1%, while the others were less than 0.5%. When the strains were cultured to milk base, viable counts of the strains tested increased more 1 log cycle than inoculation, but acid production was very low except L. plantarum KCTC3099. Also, L. plantarum KCTC3099, B. adolescentis Maeil-K8, and B. infantis Maeil-K9 were stable in fermented milk base during storage. In conclusion, L. plantarum KCTC3099 and B. infantis Maeil-K9 were confirmed to be superior for the availability as probiotics.

Radical-Scavenging Activities of Fermented Cactus Cladodes (Opuntia humifusa Raf.) (천년초 발효물의 라디칼 소거능)

  • Kim, Joo-Sung
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • The aim of this work was to select suitable fermentation treatments for the efficient bioconversion of cactus (Opuntia humifusa Raf.) bioactive components with an improved radical scavenging activity for use as a nutraceutical. To obtain microorganisms for the microbial conversion of cactus, Leuconostoc mesenteroides ATCC8294, Lactobacillus plantarum KCTC 3099, Lactobacillus plantarum KERI 236 and Monascus pilosus KCCM 60029 (ATCC 22080) were used for fermentation. Fermentation by Lac. plantarum KCTC 3099 was the most effective at scavenging 1,1-diphenyl-2-picrylhydrazyl hydrate (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and reducing iron (III). In particular, uronic acid levels showed a remarkable increase in fermentation. The polyphenol and quercetin content of the fermented cactus showed large increases from $108.65{\mu}g/mL$ and $2.71{\mu}g/mL$ to $227.83{\mu}g/mL$ and $9.73{\mu}g/mL$, respectively, showing a maximum level at 36 h of fermentation with Lac. plantarum KCTC 3099. Thus, cactus fermentation with Lac. plantarum is an useful process for the enhancement of antioxidant contents and activity of fresh cactus.

Probiotic Effects of Lactobacillus plantarum Strains Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum 균주들의 프로바이오틱 효과)

  • Lee, Xue-Mei;Lee, Hyun Ah;Kweon, Meera;Park, Eui-Seong;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1717-1724
    • /
    • 2016
  • Probiotic effects of Lactobacillus plantarum pF1 NITE-P1462 (Lp-pF1), L. plantarum KCCM 11352P (Lp-PNU), L. plantarum CBT LP3 KCTC 10782BP (Lp-CB), and L. plantarum KCTC 3099 (Lp-3099) isolated from kimchi and Lactococcus lactis KFCC 11510P (L-lactis) isolated from Doenjang were studied. Resistance to gastric and bile acid, adhesion to intestines in colon cells, thermal stability, and antioxidative and in vitro anticancer effects in HT-29 cancer cells were evaluated. L. plantarum strains showed improved tolerance of gastric and bile acids than L-lactis. Lp-pF1 had better adhesion ability in the intestine than Lp-PNU, Lp-3099, and L-lactis. Lp-pF1 also showed better heat resistance at $50^{\circ}C$, $70^{\circ}C$, and $80^{\circ}C$ than Lp-CB, Lp-3099, and L-lactis. In addition, Lp-pF1 exhibited greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals and anticancer effects in MTT assay than others. Taken together, these results suggest that L. plantarum isolated from kimchi showed higher probiotic activities with antioxidant and anticancer properties than Lac. lactis isolated from Doenjang. Lp-pF1 revealed the best probiotic activities among L. plantarum and could be used as a promising potential probiotics.

Development of Species-Specific Primers for PCR Identification of Lactobacillus hilgardii and Lactobacillus farciminis in Kimchi

  • Lee, Myung-Ki;Ku, Kyung-Hyung;Kim, Young-Jin;Kim, Kyung-Hee;Kim, Yu-Ri;Yang, Hye-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The aim of this study was to develop species-specific primer sets for kimchi Lactobacillus. Known gene sequences of Lactobacillus 16S rRNA were collected from the NCBI Gene bank, and 69 primer sets were designed using the homologous gene sequence. Six species of kimchi Lactobacilli were used as reference strains: Lactobacillus brevis KCTC3102, Lactobacillus farciminis KCTC3681, Lactobacillus fermentum KCTC3112, Lactobacillus hilgardii KCTC3500, Lactobacillus plantarum KCTC3099, and Lactobacillus sanfranciscensis KCTC3205. PCR amplification and gel electrophoresis were performed to identify the accuracy and specificity of the developed primer set. The results show that the primer set of 5'-aagcctgcgaaggcaag-3' & 5'-aggccaccggctttg-3', 5'-acatactatgcaaatctaagagattagacg-3' & 5'-actgagaatggctttaagagattagcttac-3' resulted in a specific PCR band on L. hilgardii, and primer set of 5'-ctaataccgcataacaactactttcacat-3' & 5'-aacttaataaaccgcctacattctctttac-3' on L. farciminis. The results indicate that the developed primer sets can provide a useful tool for the identification and differentiation of L. hilgardii and L. farciminis from other Lactobacillus species of kimchi.

Adhesion of Kimchi Lactobacillus Strains to Caco-2 Cell Membrane and Sequestration of Aflatoxin B1 (김치 유산균의 Caco-2 세포막 부착성 및 Aflatoxin B1 제거 효과)

  • Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.581-585
    • /
    • 2005
  • Five lactic acid bacteria (LAB) including 2 Lactobacillus strains isolated from Kimchi were evaluated to determine the binding ability to Caco-2 cells and $AFB_1$. LAB were divided into three different groups ; viable, heat-treated, and acid-treated cells. In the radioactive-labeling assay for bound cell counting, viable Lactobacillus Plantarum KCTC 3099 showed the higher adhesion to Caco-2 cells with the binding capacity of $39.2\%$, which was $149\%$ higher than Lactobacillus rhamnosus GG as a positive control. Leuconostoc mesenteroids KCTC 3100 showed the similar binding ability to L. rhamnosus GG. After 1 hour incubation at $37^{\circ}C$ with $AFB_1$, viable L. Planterum KTCC 3099 removed the toxin by $49.8\%$, which was similar level to L. rhamnosus GG. Both heat- and acid-treated groups showed high binding effect but acid-treated group was more effective for both Caco-2 cell binding and $AFB_1$ removal than the other. These results indicate that components of bacterial cell wall might be involved in tile binding to intestinal cells and toxins.