• Title/Summary/Keyword: Lactobacillus curvatus

Search Result 42, Processing Time 0.022 seconds

Evaluation of Lactic Acid Bacterial Community in Kimchi Using Terminal-Restriction Fragment Length Polymorphism Analysis (Terminal-Restriction Fragment Length Polymorphism 분석을 이용한 김치발효 관련 유산균 군집의 평가)

  • Shim, Sang-Min;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.247-259
    • /
    • 2008
  • Terminal-restriction fragment length polymorphism (T-RFLP) analysis, one of rapid culture-independent microbial community analysis methods, was used to determine the lactic acid bacterial complexity and dynamics during kimchi fermentation at $15^{\circ}C$ and $4^{\circ}C$. At both temperatures, the common presence of Leuconostoc mesenteroides, Lc. inhae, Lc. kimchi, Weissella koreensis, W. cibaria, Lactobacillus sakei, Lb. curvatus, Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was predicted. Lc. citreum and Enterococcus faecalis were detected at $15^{\circ}C$ and $4^{\circ}C$, respectively. W. koreensis predominated during the mid stage of kimchi fermentation whereas lactobacilli were dominants during later stage. Lb. sakei and Lb. curvatus became dominants regardless of fermentation temperature but the growth of Lb. plantarum, Lb. paraplantarum, Lb. pentosus, and Lb. brevis was restricted at psychrophilic temperature. Some species of leuconostocs were maintained until the later stage of kimchi fermentation.

Characterization of an Amylase-sensitive Bacteriocin DF01 Produced by Lactobacillus brevis DF01 Isolated from Dongchimi, Korean Fermented Vegetable

  • Kang, Tae-Kyu;Kim, Wang-June
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.795-803
    • /
    • 2010
  • A DF01 strain that inhibits tyramine-producing Lactobacillus curvatus KFRI 166 was isolated from Dongchimi, a traditional Korean fermented vegetable, and identified as Lactobacillus brevis by biochemical analysis and reverse transcriptase sequencing of 16S rRNA. The antimicrobial compound produced by L. brevis DF01 was secreted at a maximum level of 640 AU/mL in late exponential phase in MRS broth, and its activity remained constant during stationary phase. The activity of bacteriocin DF01 was totally inactivated by $\alpha$-chymotrypsin, pronase E, proteinase K, trypsin, and $\alpha$-amylase, but not by catalase, which indicates the compound was glycoprotein in nature. The activity was not affected by pH changes ranging from 2 to 12 or heat treatment (60, 80, and $100^{\circ}C$ for 30 min), but was reduced after autoclaving. Bacteriocin DF01 had bacteriolytic activity and a molecular weight of approximately 8.2 kDa, as shown by tricine-SDS-PAGE analysis. Therefore, bacteriocin DF01 can be used in the manufacture of fermented meat products due to its inhibition of tyramine-producing L. curvatus and non-inhibition of L. sake, which is used as a starter culture for meat fermentation.

Identification and Fermentation Characteristics of Lactic Acid Bacteria Isolated from Hahyangju Nuruk (하향주 누룩으로부터 분리한 젖산균의 동정 및 발효 특성)

  • Park, Chi-Duck;Jung, Hee-Kyoung;Park, Hwan-Hee;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • The purpose of this study was to isolate lactic acid bacteria, useful in the fermentation industry from Hahyangju Nuruk. Five strains were isolated, and identified as Lactobacillus based on growth inhibition by 10% (v/v) alcohol at pH 4.0. Isolated strains were identified to species, and named Lactobacillus plantarum L-3, L. sakei L-10, and L. curvatus strains L-8, L-11, and L-12. Morphological characteristics, physiological data, carbohydrate fermentation patterns, and 16S rRNA sequence data, were all used to characterize the bacterial isolates. L. plantarum L-3 showed the highest lactic acid productivity of all isolates, but grew only poony in the presence of 10% (v/v) alcohol at pH 4.0. The other strains exhibited lower lactic acid productivity than did L. plantarum L-3 and did not grow in the presence of 10% (v/v) alcohol at pH 4.0. The optimal temperature and pH for lactic acid production were $30^{\circ}C$ and pH 6.0 7.0, respectively. The lactic acid productivity of L. plantarum L-3, L. sakei L-10 and the three L. curvatus strains L-8, L-11, and L-12 were (% v/v of culture supematant) 1.55, 1.0, 1.06, 1.0, and 0.99, respectively, at $30^{\circ}C$ and pH 6.0. While L. plantarum L-3 suffered growth inhibition in the presence of 10% (v/v) alcohol, growth of the other strains was inhibited at 8% (v/v) alcohol.

A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction (천연 약용식물의 미생물 발효를 통한 장내 메탄 생성 억제 효과 비교 연구)

  • Lee, A-Leum;Park, Hae-Ryoung;Kim, Mi-So;Cho, Sangbuem;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.801-813
    • /
    • 2014
  • A study was conducted to improve the biological activity of two medicinal plants, Eucommia ulmoides Oliv. and Glycyrrhiza uralensis, by fermentation. The biological activity was assessed by determining antibacterial, antioxidant and antimethanogenic properties. Fermentation was achieved by adding the plant materials in MRS broth at 10% (w/v) and different starter cultures at 1% (v/v). Condition for fermentation were incubation temperature of $30^{\circ}C$ and agitation at 150 rpm for 48 h. Six starter cultures, Weissella confusa NJ28 (Genbank accession number KJ914897), Weissella cibaria NJ33 (Genbank accession number KJ914898), Lactobacillus curvatus NJ40 (Genbank accession number KJ914899), Lactobacillus brevis NJ42 (Genbank accession number KJ914900), Lactobacillus plantarum NJ45 (Genbank accession number KJ914901) and Lactobacillus sakei NJ48 (Genbank accession number KJ914902) were used. Antibacterial activity was observed in L. curvatus NJ40 and L. plantarum NJ45 only as opposed to other treatments, including the non-fermented groups, which showed no antibacterial activity. Both plants showed antioxidant activity, although E. ulmoides Oliv. had lower activity than G. uralensis. However, fermentation by all strains significantly improved (p<0.05), antioxidant activity in both plants compared to non-fermented treatment. Six treatments were based on antibacterial activity results, selected for in vitro rumen fermentation; 1) non-fermented E. ulmoides, 2) fermented E. ulmoides NJ40, 3) fermented E. ulmoides NJ45, 4) non-fermented G. uralensis, 5) fermented G. uralensis NJ40, 6) fermented G. uralensis NJ45. A negative control was also added, making a total of 7 treatments for the in vitro experiment. Medicinal plant-based treatments significantly improved (p<0.05) total volatile fatty acid (VFA) concentration. Significant methane reduction per mol of VFA were observed in G. uralensis (p<0.05). Based on the present study, fermentation improves the biological activity of E. ulmoides Oliv. and G. uralensis. Fermented G. uralensis could also be applied as an enteric methane mitigating agent in ruminant animals.

Reduction in Concentrations of N-Nitrosodimethylamine and Its Precursors in Kimchi by Lactic Acid Bacteria (유산균에 의한 김치 중 N-Nitrosodimethylamine과 그 전구물질의 함량 감소)

  • Kim, Sang-Hyun;Kim, Sung Hyun;Kang, Kyung Hun;Kim, Jeong Gyun;Sung, Nak-Ju;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.237-243
    • /
    • 2017
  • To investigate the effects of lactic acid bacteria (LAB), Lactobacillus sakei, Lactobacillus curvatus, and Lactobacillus brevis, commonly found in kimchi, on N-nitrosodimethylamine (NDMA) and its precursors such as nitrite, dimethylamine (DMA), nitrate, and biogenic amines, Baechu (Chinese cabbage) kimchi prepared with and without LAB and $NaNO_2$ was periodically monitored for 20 days to analyze concentrations of NDMA and its precursors. Control was amine and nitrite-rich kimchi. NDMA and its precursors were analyzed to determine differences in concentrations between LAB-fortified kimchi and the control. The amounts of NDMA, nitrite, DMA, and nitrate remaining in LAB-fortified kimchi were significantly reduced compared with those of control kimchi. In addition, biogenic amines were significantly lower in kimchi prepared with L. sakei, L. curvatus, and L. brevis. These results suggest that addition of LAB to the kimchi preparation would be a promising solution for production of NDMA-reduced kimchi.

Production and Fermentation Characteristics of Mukeunji with a Mixed Starter (혼합 스타터를 이용한 묵은지의 제조 및 발효 특성)

  • Kim, Hyo Ju;Shin, Hyun-Kyung;Yang, Eun Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1467-1474
    • /
    • 2013
  • To develop a starter culture system for the fermentation of mukeunji, we introduced lactic acid bacteria and yeast isolated from mukeunji into kimchi fermentation as a single or a mixed culture. On evaluating mukeunji flavor, we found that the mixed starter kimchi prepared with two strains, ML17 and MY7, gave the best sensory score. These strains were identified as Lactobacillus (Lb.) curvatus ML17 and Saccharomyces (S.) servazzii MY7 by molecular identification method. The fermentative characteristics of starter kimchi were investigated by measuring changes in the physicochemical and microfloral characteristics during the fermentation. The decrease in pH and increase in acidity in the starter kimchi were faster compared to respective values of control kimchi. There was a gradual decrease in hardness of starter kimchi, which was still slow compared to hardness decrease in control kimchi. Microbial analysis of starter kimchi revealed that Lb. curvatus ML17 and S. servazzii MY7 were the dominant organisms during the entire fermentation period. The lactic acid and citric acid contents of starter kimchi were higher than those of the control kimchi after 90 days of fermentation. By sensory evaluation, the starter kimchi scored higher in appearance, mukeunji flavor, sourness, carbonated flavor, savory taste, texture, and overall acceptability, but lower in off-flavor than the control kimchi.

Probiotic Mixture KF Attenuates Age-Dependent Memory Deficit and Lipidemia in Fischer 344 Rats

  • Jeong, Jin-Ju;Kim, Kyung-Ah;Ahn, Young-Tae;Sim, Jae-Hun;Woo, Jae-Yeon;Huh, Chul-Sung;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1532-1536
    • /
    • 2015
  • To investigate the memory-enhancing effect of lactic acid bacteria, we selected the probiotic mixture KF, which consisted of Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 (1 × 1011 CFU/g of each strain), and investigated its antilipidemic and memoryenhancing effects in aged Fischer 344 rats. KF (1 × 1010 CFU/rat/day), which was administered orally once a day (6 days per week) for 8 weeks, significantly inhibited age-dependent increases of blood triglyceride and reductions of HDL cholesterol (p < 0.05). KF restored agereduced spontaneous alternation in the Y-maze task to 94.4% of that seen in young rats (p < 0.05). KF treatment slightly, but not significantly, shortened the escape latency daily for 4 days. Oral administration of KF restored age-suppressed doublecortin and brain-derived neurotrophic factor expression in aged rats. Orally administered KF suppressed the expression of p16, p53, and cyclooxygenase-2, the phosphorylation of Akt and mTOR, and the activation of NF-κB in the hippocampus of the brain. These findings suggest that KF may ameliorate age-dependent memory deficit and lipidemia by inhibiting NF-κB activation.

Effect of biogenic amine forming and degrading bacteria on quality characteristics of Kimchi (바이오제닉 아민 생성균과 분해균이 김치의 품질 특성에 미치는 영향)

  • Lim, Eun-Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • The purpose of this study was to investigate the quality characteristics of kimchi prepared with a single starter culture of biogenic amines (BA)-forming lactic acid bacteria (LAB) or a combined starter cultures composed of BA-forming and BA-degrading LAB. As the fermentation proceeded, the lactic acid bacterial count, titratable acidity, and BA content in kimchi prepared with myeolchi-aekjeot were slightly higher than those of kimchi prepared with saeu-jeot. The amount and type of BA produced by LAB were mostly strain dependent rather than species specific. Among all of the isolated LAB strains, the highest levels of cadaverine, histamine, putrescine and tyramine were produced by Leuconostoc mesenteroides MBK32, Lactobacillus brevis MBK34, Lactobacillus curvatus MBK31 and Enterococcus faecalis SBK31, respectively. BA-forming and BA-degrading starter cultures played an important role in the growth rate and organic acid-producing ability of LAB in kimchi. Interestingly, BA contents in kimchi increased by adding single BA-forming LAB starter were effectively lowered by the mixed cultures with BA-degrading LAB.

Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species

  • Bulgasem, Bulgasem Y.;Lani, Mohd Nizam;Hassan, Zaiton;Yusoff, Wan Mohtar Wan;Fnaish, Sumaya G.
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.302-309
    • /
    • 2016
  • The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.

Development of an Environmental Friend Additive Using Antibacterial Natural Product for Reducing Enteric Rumen Methane Emission (항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발)

  • Lee, A-Leum;Yang, Jinho;Cho, Sang-Buem;Na, Chong-Sam;Shim, Kwan-Seob;Kim, Young-Hoon;Bae, Gui-Seck;Chang, Moon-Baek;Choi, Bitna;Shin, Su-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.491-502
    • /
    • 2014
  • The present study was conducted to investigate effective starter culture to improve biological activity of Asarum sieboldii. Antibacterial activity, antioxidant activity and reduction of enteric rumen methane production were used as criterions for biological activity. Ground A. sieboldii was added in MRS broth at 10% (w/v) and fermented by different starter cultures. Weissella confusa NJ28, Weissella cibaria NJ33, Lactobacillus curvatus NJ40, Lactobacillus brevis NJ42, Lactobacillus plantarum NJ45 and Lactobacillus sakei NJ48 were used for starter culture strains. Each starter culture was inoculated with 1% (v/v) ratio and fermentation was performed at $30^{\circ}C$ with agitation (150 rpm) for 48 h. MRS broth for the control was employed without starter culture. Then the fermentation growth was dried and extracted using ethyl alcohol. The growth of starter culture was detected at NJ40, NJ42, NJ45 and NJ48. And the highest cell growth was found in NJ40. Antibacterial activity against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum were observed in the extract fermented by NJ40 and NJ45. All treatments showed antioxidant activities, however, there were no significant differences (p>0.05). In in vitro rumen fermentation, negative control (NC) and positive control (PC) were assigned to without extract and with non-fermented A. sieboldii extract. Significant suppression of gas productions were detected in positive control and treatments compared to negative control (p<0.05). However, total volatile fatty acid production was not suppressed. Significant methane reduction per total volatile fatty acid productions were found in positive control and NJ45 treatment (p<0.05). The present study suggested a fermentation of A. sieboldii using NJ45 strain could improve its biological activity and make possible for its use in bio additive for enteric rumen methane mitigation without suppression of animal productivity.