• Title/Summary/Keyword: Lactobacillus Reuteri

Search Result 80, Processing Time 0.031 seconds

Multilayer Coating with Red Ginseng Dietary Fiber Improves Intestinal Adhesion and Proliferation of Probiotics in Human Intestinal Epithelial Models

  • Ye Seul Son;Mijin Kwon;Naeun Son;Sang-Kyu Kim;Mi-Young Son
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1309-1316
    • /
    • 2023
  • To exert their beneficial effects, it is essential for the commensal bacteria of probiotic supplements to be sufficiently protected as they pass through the low pH environment of the stomach, and effectively colonize the intestinal epithelium downstream. Here, we investigated the effect of a multilayer coating containing red ginseng dietary fiber, on the acid tolerance, and the adhesion and proliferation capacities of three Lactobacillus strains (Limosilactobacillus reuteri KGC1901, Lacticaseibacillus casei KGC1201, Limosilactobacillus fermentum KGC1601) isolated from Panax ginseng, using HT-29 cells, mucin-coated plates, and human pluripotent stem cell-derived intestinal epithelial cells as in vitro models of human gut physiology. We observed that the multilayer-coated strains displayed improved survival rates after passage through gastric juice, as well as high adhesion and proliferation capacities within the various gut epithelial systems tested, compared to their uncoated counterparts. Our findings demonstrated that the multilayer coat effectively protected commensal microbiota and led to improved adhesion and colonization of intestinal epithelial cells, and consequently to higher probiotic efficacy.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Study of optimization of natural nitrite source production from spinach (시금치 유래 천연 아질산염 생산의 최적화 연구)

  • Kim, Tae-Kyung;Seo, Dong-Ho;Sung, Jung-Min;Ku, Su-Kyung;Jeon, Ki-Hong;Kim, Young-Boong;Choi, Yun-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.459-461
    • /
    • 2017
  • This study investigated the screening and optimization of nitrite production from fermented spinach extract using different lactic acid bacteria, fermentation temperature, and time. Spinach extract was fermented using various lactic acid bacteria at 24, 30, and $36^{\circ}C$ for 6, 12, 18, 24, 36, 48, 72, and 96 h in the presence of different carbohydrates (glucose, sucrose, fructose, and lactose). Lactobacillus farciminis (KCTC 3618) produced the highest amount of nitrite using fermented spinach extract at $30^{\circ}C$ for 28 h compared to Staphylococcus carnosus, L. coryniformis (KCTC 3167), L. fructosus (KCTC 3544), L. reuteri (KCTC 3677), L. amylophilus (KCTC 3160), L. hilgardii (KCTC 3500), L. delbrueckii (KCTC 1058), L. fermentum (KCTC 3112), L. plantarum (KCTC 3104), and L. brevis (KCTC 3498). Comparison of the yield at different fermentation temperatures showed that the highest amount of nitrite was produced using fermented spinach extract at $30^{\circ}C$. Similarly, maximum nitrite yield was observed after 36 h fermentationin in the presence of sucrose. Therefore, maximum nitrite production was observed upon L. farciminis-mediated fermentation of spinach extractat $30^{\circ}C$ for 36 h in the presence of sucrose.

Actinidia arguta Sprout as a Natural Antioxidant: Ameliorating Effect on Lipopolysaccharide-Induced Cognitive Impairment

  • Kang, Jeong Eun;Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Kwon, Bong Seok;Park, Sang Hyun;Lee, Chang Jun;Yoo, Seul Ki;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Here, we investigated the prebiotic and antioxidant effects of Actinidia arguta sprout water extract (AASWE) on lipopolysaccharide (LPS)-induced cognitive deficit mice. AASWE increased viable cell count, titratable acidity, and acetic acid production in Lactobacillus reuteri strain and showed a cytoprotective effect on LPS-induced inflammation in HT-29 cells. We assessed the behavior of LPS-induced cognitive deficit mice using Y-maze, passive avoidance and Morris water maze tests and found that administration of AASWE significantly improved learning and memory function. The AASWE group showed antioxidant activity through downregulation of malondialdehyde levels and upregulation of superoxide dismutase levels in brain tissue. In addition, the AASWE group exhibited activation of the cholinergic system with decreased acetylcholinesterase activity in brain tissue. Furthermore, AASWE effectively downregulated inflammatory mediators such as phosphorylated-JNK, phosphorylated-NF-κB, TNF-α and interleukin-6. The major bioactive compounds of AASWE were identified as quercetin-3-O-arabinopyranosyl(1→2)-rhamnopyranosyl(1→6)-glucopyranose, quercetin-3-O-apiosyl(1 → 2)-galactoside, rutin, and 3-caffeoylquinic acid. Based on these results, we suggest that AASWE not only increases the growth of beneficial bacteria in the intestines, but also shows an ameliorating effect on LPS-induced cognitive impairment.

Management of the Most Common Functional Gastrointestinal Disorders in Infancy: The Middle East Expert Consensus

  • Indrio, Flavia;Enninger, Axel;Aldekhail, Wajeeh;Al-Ghanem, Ghanem;Al-Hussaini, Abdulrahman;Al-Hussaini, Bakr;Al-Refaee, Fawaz;Al-Said, Khoula;Eid, Bassam;Faysal, Wafaa;Hijazeen, Ruwaida;Isa, Hasan M.A.;Onkarappa, Dinesh;Rawashdeh, Mohammad;Rohani, Pejman;Sokhn, Maroun
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.325-336
    • /
    • 2021
  • The occurrence of functional gastrointestinal disorders (FGIDs) is a formidable challenge for infants, parents, and healthcare professionals. Although data from the Middle East are scarce, experts consider FGIDs a prevalent condition in everyday clinical practice. The new Rome IV criteria revisited the definitions from a clinical perspective to provide a practical and consistent diagnostic protocol for FGIDs. However, the treatment practices for functional disorders vary considerably among Middle Eastern countries, often resulting in mismanagement with unnecessary investigations and treatments. In addition, the role of various treatment modalities, including probiotics such as Lactobacillus reuteri DSM 17938, in FGIDs requires further discussion and evaluation. During a consensus meeting, a locally relevant approach for treating common FGIDs such as infant regurgitation, infant colic, and functional constipation was discussed and approved by regional experts. The participants suggested a simplified treatment plan and protocol for general pediatricians and other primary care physicians managing FGIDs. This easy-to-follow standardized protocol will help streamline the initial management of this complex disorder in the Middle East region and even globally.

Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea

  • Eunju Shin;Jennifer Jaemin Paek;Yeonhee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.500-510
    • /
    • 2023
  • In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.

Evaluation of anti-inflammatory efficacy of Lacticaseibacillus rhamnosus L22-FR28 (KACC 92513P) isolated from infant feces and its Oenanthe javanica ferments (영아분변 유래 Lacticaseibacillus rhamnosus L22-FR28(KACC 92513P) 균주와 미나리 발효물의 항염증 효능 평가)

  • Seoyeon Kwak;Hee-Min Gwon;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.474-485
    • /
    • 2024
  • The purposes of this study were to isolate the potential Lacticaseibacillus spp. from the feces of infants before weaning, to investigate the safety of antibiotics resistance and beta-haemolysis, and to evaluate the anti-bacterial and anti-inflammatory effects between the selected strains and Oenanthe javanica (Oj) fermented by them. As a result of analyzing the intestinal microbial community among the stools of four infants, the genus Bifidobacterium was the most dominant, but Lacticaseibacillus (L.) rhamnosus was the most frequently isolated because of the easy culture. Nine test strains, including Lactobacillus rhamnosus LGG (ATCC 53103) as the positive control, were sensitive against 8 kinds of antibiotics without vancomycin in comparison with the cut-off values at the European Food Safety Authority (EFSA), and there was no hemolysis. In the antibacterial activity experiment, the Lacticaseibacillus rhamnosus L22-FR28 (L28, KACC 92513P) strain and Oj+L28 ferment showed significantly (p<0.05) higher activities than LGG against Bacillus cereus and Staphylococcus aureus. Additionally, these decreased the activity of the NF-kB/AP-1 transcription factor and inhibited the nitric oxide and cytokines (TNF-α and IL-6) produced in macrophage RAW cells stimulated by lipopolysaccharide (LPS). Consequently, the L. rhamnosus L28 strain and Oenanthe javanica+L. rhamnosus L28 (Oj+L28) ferment selected with the high anti-inflammatory effect will improve health functionality after more research, such as the verification of animal level and identification of mechanism on an anti-inflammatory.

Effects of Lactobacilli on the Performance, Diarrhea Incidence, VFA Concentration and Gastrointestinal Microbial Flora of Weaning Pigs

  • Huang, Canghai;Qiao, Shiyan;Li, Defa;Piao, Xiangshu;Ren, Jiping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.401-409
    • /
    • 2004
  • Two experiments were conducted to evaluate the effects of a complex Lactobacilli preparation on performance, resistance to E. coli infection and gut microbial flora of weaning pigs. In exp. 1, twelve pigs (7.65$\pm$1.10 kg BW), weaned at 28 d, were randomly allotted into 2 groups and placed in individual metabolic cages. During the first 7 d, one group of pigs was provided ad libitum access to water containing $10^5$ colony forming units (CFU) Lactobacilli per ml and the control group was provided tap water. The Lactobacilli preparation included Lactobacillus gasseri, L. reuteri, L. acidophilus and L. fermentum, which were isolated from the gastrointestinal (GI) tract mucosa of weaning pigs. On d 8, 20 ml of $10^8$ CFU/ml E. coli solution (serovars K99, K88 and 987P at the ratio of 1:1:1) was orally administered to each pig. Diarrhea scores and diarrhea incidence were recorded from d 7 to 14. On d 14, pigs were euthanized and digesta and mucosa from the stomach, duodenum, jejunum, ileum, cecum and colon were sampled using aseptic technique to determine microflora by culturing bacteria in selective medium. The results showed that Lactobacilli treatment significantly decreased E. coli and aerobe counts (p<0.01) but increased Lactobacilli and anaerobe counts (p<0.01) in digesta and mucosa of most sections of the GI tract. A 66 and 69.1% decrease in diarrhea index and diarrhea incidence, respectively, was observed in the Lactobacilli treated group. In exp. 2, Thirty-six crossbred Duroc$\times$Landrace$\times$Yorkshire piglets, weaned at 28$\pm$2 days, were selected and randomly allocated into 2 groups. There were 18 piglets in each group, 3 piglets in one pen and 6 replicates in each treatment with 3 pens of barrow and 3 pens of female piglet in each treatment. Piglets had ad libitum access to feed and water. The initial body weight of piglet was 7.65$\pm$1.09 kg. Dietary treatments included a non-medicated basal diet with Lactobacilli ($10^5$ CFU/g diet) or carbadox (60 mg/kg) as control. On d 21, six pigs per group (one pig per pen) were euthanized. Ileal digesta was collected to determine apparent amino acid digestibility. Microflora content was determined similarly to exp.1. The results showed that Lactobacilli treatment significantly improved average daily feed intake (ADFI) of pigs compared to carbadox (p<0.05) during the first 2 wks after weaning and average daily gain (ADG) and ADFI increased significantly (p<0.05) from d 8 to 14. Nitrogen and total phosphorus digestibility also increased (p<0.05). Bacterial counts were similar to exp. 1. The results indicate that the complex Lactobacilli preparation improved performance for 2 wks after weaning, enhanced resistance to E. coli infection, and improved microbial balance in the GI tract.

Preparation and Quality Characteristics of the Fermentation product of Ginseng by Lactic Acid Bacteria (FGL) (유산균을 이용한 발효인삼 제조 및 품질 특성)

  • Park, Soo-Jin;Kim, Dong-Hyun;Paek, Nam-Soo;Kim, Sung-Soo
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • Ginseng as a raw material for production of probiotic ginseng product by lactic acid bacteria (LAB) was evaluated in this study. Either white ginseng (WG) or red ginseng (RG) (1% or 5%, w/v) were directly inoculated with a 24 hold seed culture of twenty seven substrains of four different LAB ($1.0{\times}10^6CFU/ml$); Lactobacillus spp., Streptococcus/Enterococcus spp., Leuconostoc/Lactococcus spp. and Bifidobacterium spp., and incubated at $37^{\circ}C$ for 24 or 48 h. Among 27 kinds of LAB, seven substrains of Lactobacillus (MG208, MG311, MG315, MG501, MG501C, MG505, MG590) and one Bifidobacterium (MG723) were selected based on their dose dependent stimulation of the growth of LAB in the presence of ginseng and changes in pH, acidity and viable cell counts during fermentation were examined. Lactobacillus MG208 specifically was found to show the best growth on 5% RG and reached nearly $14.0{\times}10^8CFU/ml$ after 48 h of fermentation and produced the titratable acidity as $0.84{\pm}0.02%$, whereas the pH was significantly lowered from $6.80{\pm}0.01\;to\;3.42{\pm}0.02$. These results indicated that ginseng can be an appropriate material to prepare the fermentation product by several strains of LAB. Therefore we should further check whether probiotic ginseng product may have synergistic health benefits of both probiotics and ginseng to serve for vegetarians and lactose-allergic consumers.

Effects of Prebiotics and Probiotics on Swine Intestinal Microflora and Fermentation Products In Vitro Fermentation (In vitro 발효에서 Prebiotics와 Probiotics가 돼지 장내미생물과 발효산물에 미치는 영향)

  • Kim, Dong-Woon;Chae, Su-Jin;Kim, Young-Hwa;Jung, Hyun-Jung;Lee, Sung-Dae;Park, Jun-Cheol;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Kim, In-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In the present study, the effects of prebiotics and prebiotics+probiotics on intestinal microflora and fermentation products were evaluated in a pig in vitro fermentation model. The substrates used in this study were iso-malto oligosaccharide (IMO), partially digested chicory-inulin (CI), raffinose (RA), and cyclodextrin (CD) as prebiotics and Lactobacillus reiteri as probiotics. For a pig in vitro fermentation, the experimental diet for growing pigs was predigested using digestive enzymes secreted by small intestine and this hydrolyzed diet was mixed with a buffer solution containing 5% fresh swine feces. The mixture was then incubated with either prebiotics or prebiotics+probiotics for 24 h. Samples were taken at 24 h, and viable counts of microflora, gas, pH, volatile organic compounds (VOCs) and short-chain fatty acid (SCFA) were analyzed. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments containing prebiotics and prebiotics+probiotics when compared to the control. However, the number of lactic acid bacteria increased in the prebiotics and prebiotics+probiotics treatment. The pH values in the fermentation fluid decreased in all treatments when compared to the control, and their effects were greater in the prebiotics+probiotics group than prebiotics group. Fermentation with prebiotics resulted in a reduction in malodorous compounds such as ammonia, hydrogen sulfide and skatole when compared to the prebiotics+probiotics group. Short-chain fatty acid production was also higher for treatment with prebiotics+probiotics than treatment with prebiotics. In conclusion, the results of this study demonstrated that fermentation with prebiotics was effective in reducing the formation of malodorous compounds and prebiotics+probiotics was effective in increasing lactic acid bacteria and SCFA and reducing the pH. Moreover, further studies will be needed to determine whether the results observed in the in vitro model would occur in pigs that ingest these prebiotics or probiotics.