Browse > Article
http://dx.doi.org/10.4014/jmb.2009.09012

Actinidia arguta Sprout as a Natural Antioxidant: Ameliorating Effect on Lipopolysaccharide-Induced Cognitive Impairment  

Kang, Jeong Eun (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Park, Seon Kyeong (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Kang, Jin Yong (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Kim, Jong Min (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Kwon, Bong Seok (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Park, Sang Hyun (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Lee, Chang Jun (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Yoo, Seul Ki (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Heo, Ho Jin (Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.1, 2021 , pp. 51-62 More about this Journal
Abstract
Here, we investigated the prebiotic and antioxidant effects of Actinidia arguta sprout water extract (AASWE) on lipopolysaccharide (LPS)-induced cognitive deficit mice. AASWE increased viable cell count, titratable acidity, and acetic acid production in Lactobacillus reuteri strain and showed a cytoprotective effect on LPS-induced inflammation in HT-29 cells. We assessed the behavior of LPS-induced cognitive deficit mice using Y-maze, passive avoidance and Morris water maze tests and found that administration of AASWE significantly improved learning and memory function. The AASWE group showed antioxidant activity through downregulation of malondialdehyde levels and upregulation of superoxide dismutase levels in brain tissue. In addition, the AASWE group exhibited activation of the cholinergic system with decreased acetylcholinesterase activity in brain tissue. Furthermore, AASWE effectively downregulated inflammatory mediators such as phosphorylated-JNK, phosphorylated-NF-κB, TNF-α and interleukin-6. The major bioactive compounds of AASWE were identified as quercetin-3-O-arabinopyranosyl(1→2)-rhamnopyranosyl(1→6)-glucopyranose, quercetin-3-O-apiosyl(1 → 2)-galactoside, rutin, and 3-caffeoylquinic acid. Based on these results, we suggest that AASWE not only increases the growth of beneficial bacteria in the intestines, but also shows an ameliorating effect on LPS-induced cognitive impairment.
Keywords
Actinidia arguta sprout; antioxidants; anti-inflammation; lipopolysaccharide; neuroprotection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 China R, Mukherjee S, Sen S, Bose S, Datta S, Koley H, et al. 2012. Antimicrobial activity of Sesbania grandiflora flower polyphenol extracts on some pathogenic bacteria and growth stimulatory effect on the probiotic organism Lactobacillus acidophilus. Microbiol. Res. 167: 500-506.   DOI
2 Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, et al. 2005. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur. J. Immunol. 35: 584-592.   DOI
3 Khallouki F, Voggel J, Breuer A, Klika KD, Ulrich CM, Owen RW. 2017. Comparison of the major polyphenols in mature argan fruits from two regions of Morocco. Food Chem. 221: 1034-1040.   DOI
4 Ye M, Yan Y, Guo DA. 2005. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19: 1469-1484.   DOI
5 Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108: 16050-16055.   DOI
6 Savignac HM, Kiely B, Dinan TG, Cryan JF. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26: 1615-1627.   DOI
7 Kanauchi O, Serizawa I, Araki Y, Suzuki A, Andoh A, Fujiyama Y, et al. 2003. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J. Gastroenterol. 38: 134-141.   DOI
8 Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. 2007. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56: 1522-1528.   DOI
9 Parkar SG, Simmons L, Herath TD, Phipps JE, Trower TM, Hedderley DI, et al. 2017. Evaluation of the prebiotic potential of five kiwifruit cultivars after simulated gastrointestinal digestion and fermentation with human faecal bacteria. Int. J. Food Sci. Technol. 53: 1203-1210.   DOI
10 Duary RK, Batish VK, Grover S. 2014. Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. Genes Nutr. 9: 398.   DOI
11 Lim YJ, Oh CS, Park YD, Eom SH, Kim DO, Kim UJ, et al. 2014. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943-949.   DOI
12 Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, et al. 2013. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4: 17-27.   DOI
13 Patil CS, Singh VP, Satyanarayan PSV, Jain NK, Singh A, Kulkarni SK. 2003. Protective effect of flavonoids against aging-and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 69: 59-67.   DOI
14 Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. 2010. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci. Lett. 469: 6-10.   DOI
15 Hsia CH, Wang CH, Kuo YW, Ho YJ, Chen HL. 2012. Fructo-oligosaccharide systemically diminished D-galactose-induced oxidative molecule damages in BALB/cJ mice. Br. J. Nutr. 107: 1787-1792.   DOI
16 Tyagi E, Agrawal R, Nath C, Shukla R. 2008, Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J. Neuroimmunol. 205: 51-56.   DOI
17 Goujon E, Parnet P, Laye S, Combe C, Dantzer R. 1996. Adrenalectomy enhances pro-inflammatory cytokines gene expression, in the spleen, pituitary and brain of mice in response to lipopolysaccharide. Mol. Brain Res. 36: 53-62.   DOI
18 Roth J, De Souza GEP. 2001. Fever induction pathways: Evidence from responses to systemic or local cytokine formation. Braz. J. Med. Biol. Res. 34: 301-314.   DOI
19 Banks WA. 2005. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr. Pharm. Design 11: 973-984.   DOI
20 Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. 2016. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav. Immun. 52: 120-131.   DOI
21 Shokryazdan P, Jahromi MF, Navidshad B, Liang JB. 2017. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 206: 1-9.   DOI
22 Qiao Y, Ruan Y, Xiong C, Xu Q, Wei P, Ma P, et al. 2010. Chitosan oligosaccharides suppressant LPS binding to TLR4/MD-2 receptor complex. Carbohydr. Polym. 82: 405-411.   DOI
23 Kim HP, Son KH, Chang HW, Kang SS. 2004. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96: 229-245.   DOI
24 Hou Y, Aboukhatwa MA, Lei DL, Manaye K, Khan I, Luo Y. 2010. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology 58: 911-920.   DOI
25 Sergent T, Piront N, Meurice J, Toussaint O, Schneider YJ. 2010. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact. 188: 659-667.   DOI
26 Scalbert A, Morand C, Manach C, Remesy C. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 56: 276-282.   DOI
27 Wang D, Ho L, Faith J, Ono K, Janle EM, Lachcik PJ, et al. 2015. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization. Mol. Nutr. Food Res. 59: 1025-1040.   DOI
28 Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262-1267.   DOI
29 Etxeberria U, Fernandez-Quintela A, Milagro FI, Aguirre L, Martinez JA, Portillo MP. 2013. Impact of polyphenols and polyphenolrich dietary sources on gut microbiota composition. J. Agric. Food Chem. 61: 9517-9533.   DOI
30 Duerkop BA, Vaishnava S, Hooper LV. 2009. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31: 368-376.   DOI
31 Caracciolo B, Xu W, Collins S, Fratiglioni L. 2014. Cognitive decline, dietary factors and gut-brain interactions. Mech. Ageing Dev. 136: 59-69.   DOI
32 Noble EE, Hsu TM, Kanoski SE. 2017. Gut to brain dysbiosis: Mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front. Behav. Neurosci. 11: 9.   DOI
33 Jia S, Lu Z, Gao Z, An J, Wu X, Li X, et al. 2016. Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of Alzheimer's disease. Int. J. Biol. Macromol. 83: 416-425.   DOI
34 Yen CH, Wang CH, Wu WT, Chen HL. 2016. Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated Balb/cJ mice. Nutr. Neurosci. 20: 228-237.   DOI
35 Kim HY, Hwang KW, Park SY. 2014. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells. Nutr. Res. 34: 1008-1016.   DOI
36 Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S. 2012. Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiotics Antimicrob. Proteins 4: 47-58.   DOI
37 Cryan JF, O'mahony SM. 2011. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 23: 187-192.   DOI
38 Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. 2013. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem. 24: 298-310.   DOI
39 Lim H, Kang S, Park M, Yoon J, Han B, Choi S, et al. 2006. Anti-oxidative and nitric oxide production inhibitory activities of phenolic compounds from the fruits of Actinidia argute. Nat. Prod. Sci. 12: 221-225.
40 Ha JS, Jin DE, Park SK, Park CH, Seung TW, Bae DW, et al. 2015. Antiamnesic effect of Actinidia arguta extract intake in a mouse model of TMT-induced learning and memory dysfunction. Evid.-Based Complement. Altern. Med. 2015: 876484.
41 Lee AY, Kang MJ, Choe E, Kim JI. 2015. Hypoglycemic and antioxidant effects of Daraesoon (Actinidia arguta shoot) in animal models of diabetes mellitus. Nutr. Res. Pract. 9: 262-267.   DOI
42 Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, et al. 2015. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J. Funct. Food 14: 424-434.   DOI
43 Hvattum E. 2010. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spectrom. 16: 655-662.   DOI
44 Reza MA, Hossain MA, Lee SJ, Kim JC, Park SC. 2016. In vitro prebiotic effects and quantitative analysis of Bulnesia sarmienti extract. J. Food Drug Anal. 24: 822-830.   DOI
45 He W, Liu X, Xu H, Gong Y, Yuan F, Gao Y. 2010. On-line HPLC-ABTS screening and HPLC-DAD-MS/MS identification of free radical scavengers in Gardenia (Gardenia jasminoides Ellis) fruit extracts. Food Chem. 123: 521-528.   DOI