• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 965, Processing Time 0.026 seconds

Protease Activity of Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food (전통 발효식품으로부터 Protease 활성을 보유한 유산균의 분리 및 동정)

  • Kook, Moo Chang;Cho, Seok Cheol;Park, Hoon;Kim, Seung Seop;Pyun, Yu Ryang;Choi, Woon Yong;Lee, Hyeon Yong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.182-187
    • /
    • 2011
  • A proteolytic lactic acid bacterium was isolated from Korean traditional fermented foods. The isolate BV-26, which had a protease activity (24 U/mg-crude protein), was identified as Lactobacillus plantarum by the API 50CHL kit and 16S rDNA analysis (99.9% of homology), and named as L. plantarum BV-26. Cell growth and protease activity of L. plantarum BV-26 was determined in MRS broth using 5L jar fermentor at $30^{\circ}C$. The maximum growth of L. plantarum BV-26 was reached at 18 hr in MRS broth, while protease activity of BV-26 was detectable at 12 hr and the highest activity was obtained after 16 hr cultivation. Therefore, we expect that the proteolytic lactic acid bacteria, L. plantarum BV-26, may be used as a starter for the fermentation of animal feed. Especially, the fermentation of soybean meal with the strain can be applied for improving feed utilization.

Preparation and characteristics of yogurt added with enzymatically saccharified Korean rice wine lees powder (효소로 당화시킨 주박 분해물을 첨가한 요구르트의 발효 특성)

  • Kim, Dong Chung;Won, Sun Im;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.315-320
    • /
    • 2018
  • This study was carried out to determine the effect of enzymatically saccharified Korean rice wine lees powder (eKRWLP) on the quality characteristics and storage stability of curd yogurt. Yogurt with different contents [0.5-2.0% (w/w)] of eKRWLP was incubated with commercially available mixed lactic acid bacteria (Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium longum) at $40^{\circ}C$ for 18 h. The production of acid measured at pH and titratable acidity of yogurts increased with increasing eKRWLP content. After 12 h fermentation, titratable acidity of eKRWLP yogurt was 0.77-0.90% and was higher than that (0.72%) of yogurt made without eKRWLP. The viable cell counts of lactic acid bacteria in eKRWLP yogurts were increased in proportion to the addition of eKRWLP, and increased up to 8.01-8.13 log CFU/g after 12 h incubation. The repressive effect of whey separation in eKRWLP yogurt curd significantly decreased than that in Korean rice wine lees powder (KRWLP) yogurt. With sensory evaluation, yogurt with 0.5% eKRWLP obtained the highest scores among all eKRWLP yogurts. When eKRWLP yogurts and the control preparations fermented for 12 h were incubated at $4^{\circ}C$, their pHs and titratable acidities were slightly changed and the number of viable lactic acid bacteria were well maintained above $10^7CFU/g$ for 16 days.

Temperature and microbial changes of corn silage during aerobic exposure

  • Lee, Seong Shin;Lee, Hyuk Jun;Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Kim, Sang Bum;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.988-995
    • /
    • 2019
  • Objective: This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. Methods: Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at $1.2{\times}10^5$ colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a $2{\times}2$ (hybrid${\times}$inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. Results: The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. Conclusion: The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.

Effect of Fermented Soybean on the Proliferation and Growth in HaCaT and Fibroblast Cell (대두 발효물이 인간 유래 피부세포의 증식 및 성장에 미치는 영향)

  • Kim, Eun-Joo;Han, Myung-Ryun;Lee, So-Young;Kim, Ae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.326-335
    • /
    • 2021
  • This study was undertaken to determine the effect of fermented soybean extract and its fractions on skin cell proliferation and growth. The extract was procured by the pepsin and Lactobacillus rhamnosus fermentation of soybean. LC-MS analysis was performed subsequent to soybean fermentation, and cell viability was measured by the WST-1 assay. Cell proliferation was observed to increase after exposing cells to the fermented soybean extract and its fractions at all concentrations tested (0~2,000 ㎍/mL). In particular, compared to the normal control group and 120 % proliferation of the EGF (epidermal growth factor) positive control group, 160~180 % cell proliferation was achieved at 800 ㎍/ml, indicating the excellent potential as an application material for skin aging inhibition and skin cell regeneration. In addition, we also examined the effects of fermented soybean extract and its fractions on wound healing ability, in HaCaT cells and fibroblasts. Our results indicate excellent cell migration abilities after treatment with fermented soybean extract and its fractions, as compared to the control treatment. Similar cell migration abilities were observed in the positive control group (EGF). Taken together, our results indicate that fermented soybean extract and its fractions (F4 and F5) exert amelioratory effects as a natural material for skin.

Effects of Fermented Lotus Extracts on the Differentiation in 3T3-L1 Preadipocytes (3T3-L1 전지방세포에서 연잎-연근 혼합 발효물의 지방세포 분화 억제 효과)

  • Lee, Sin Ji;Bose, Shambhunath;Lee, Su-Jin;Jeong, Ji-Eun;Koo, Byung-Soo;Kim, Dong-Il;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.13 no.2
    • /
    • pp.74-83
    • /
    • 2013
  • Objectives: This study was performed to evaluate the effects of fermented lotus extracts on the inhibition of differentiation in 3T3-L1 preadipocytes. Methods: Extracts of lotus leaf and lotus root were fermented using 4 different probiotics separately, including Lactobacillus plantarum, Lactobacillus rhamnosus, Bifidobacterium breve, and Bifidobacterium longum. Inhibition of preadipocyte differentiation was examined by Oil red O dye staining. Expressions of adipogenic transcription factors including CCAAT/enhancer binding proteins (C/$EBP{\alpha}$) and peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$) were analyzed by real time polymerase chain reaction and Western blotting analysis. Results: Fermented lotus extracts inhibited adipogenic transcription factors by inhibiting preadipocytes differentiation. All of the groups fermented by 4 kinds of probiotics showed reduction in Oil Red O dye staining. Bifidobacterium breve showed the most effective inhibition of C/$EBP{\alpha}$. Bifidobacterium breve and Bifidobacterium longum showed the best downregulation of $PPAR{\gamma}$ expressions compared with the control and the unfermented lotus group. Conclusions: Fermented lotus extracts showed significant effects on inhibition of preadipocyte differentiation in 3T3-L1 preadipocytes showing correlation with insulin sensitivity and lipid metabolism related with obesity.

Effects of probiotic supplement (Bacillus subtilis and Lactobacillus acidophilus) on feed efficiency, growth performance, and microbial population of weaning rabbits

  • Phuoc, Thanh Lam;Jamikorn, Uttra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.198-205
    • /
    • 2017
  • Objective: This study aimed to investigate the effects of single or/and double strains of probiotic supplement on feed efficiency, growth performance, and microbial population in distal gastrointestinal tract (GIT) of weaning rabbits. Methods: Sixty-four weaning (28 days old) New Zealand White rabbits were randomly distributed into four groups with treatments including: basal diet without probiotic supplement (control) or supplemented as follows: $1{\times}10^6cfu/g$ B. subtilis (BS group), $1{\times}10^7cfu/g$ L. acidophilus (LA group), or $0.5{\times}10^6cfu/g$ B. subtilis plus $0.5{\times}10^7cfu/g$ L. acidophilus (BL group). During the research, the male and female rabbits were fed separately. Body weight of the rabbits was recorded at 28, 42, and 70 d of age. Results: There was an increase (p<0.05) in body weight gain for the LA group at 42 d. Rabbits fed BL responsed with a greater growth (p<0.05) and better feed conversion ratio (p<0.05) than those fed with no probiotic. Digestibility coefficients of dry matter, organic matter, crude protein, neutral detergent fiber, and gross energy were higher (p<0.05) in LA and BL groups than those in the control group. Male rabbits had higher (p<0.05) Bacilli spp. and Coliformis spp. in the ileum than female rabbits. Rabbits supplemented with BS had greater (p<0.05) numbers of bacilli in all intestinal segments than those receiving no probiotic, whereas intestinal Lactobacilli populations were greater (p<0.001) in the LA and BL diets compared to control. Average intestinal coliform populations were lowest (p<0.05) in the rabbits supplemented with LA as compared to those fed the control and BS. Conclusion: Supplementation of L. acidophilus alone or in combination with B. subtilis at a half of dose could enhance number of gut beneficial bacteria populations, nutrient digestibility, cecal fermentation, feed efficiency, and growth performance, but rabbits receiving only B. subtilis alone were not different from the controls without probiotic.

Microbial diversity and physicochemical properties of takju and yakju (탁주와 약주의 이화학적 특성 및 미생물 군집 분석)

  • Koo, Ok Kyung;Lim, Eun Seob;Lee, Ae-Ran;Kim, Tae Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.400-406
    • /
    • 2018
  • Takju and yakju are traditional Korean alcoholic beverages that are prepared by fermentation of glutinous rice with nuruk, a cereal starter containing various bacteria, fungi, and yeast. In this study, physicochemical and microbial properties of a total of 12 commercial takju and yakju samples were analyzed; their pH, sweetness, and alcohol content were varied, depending on the type of alcohol, from pH 3.64-4.8, $5.1-24.8^{\circ}Bx$, and 4.6-18.5%, respectively. Microbial communities were analyzed with 16S rRNA amplicon sequencing using MiSeq system. At the phylum level, Firmicutes (86.2%) was the most dominant, followed by Proteobacteria (8.08%), Actinobacteria (2.56%), and Cyanobacteria (3.13%). Lactic acid bacteria, including Lactobacillus, Lactococcus, Leuconostoc, and Weissella were also frequently detected. Among eukaryotes, Saccharomyces cerevisiae was the most dominant in these samples.

Inhibitory Effects of Rice Bran Water Extract Fermented Lactobacillus plantarum due to cAMP-dependent Phosphorylation of VASP (Ser157) on human Platelet Aggregation

  • Kim, Hyun-Hong;Lee, Dong-Ha;Hong, Jeong Hwa;Ingkasupart, Pajaree;Nam, Gi Suk;Ok, Woo Jeong;Kim, Min Ji;Yu, Young-Bin;Kang, Hyo-Chan;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.103-114
    • /
    • 2015
  • In this study, we investigated the effect of rice bran water extract fermented with Lactobacillus plantarum KCCM-12116 (RBLp) on ADP ($20{\mu}M$)-, collagen ($10{\mu}g/mL$)-, and thrombin (0.2 U/mL)-stimulated platelet aggregation. RBLp dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation, with $IC_{50}$ values of 501.1, 637.2, and > $2,000{\mu}g/mL$, respectively. The platelet aggregation induced by ADP plus RBLp ($750{\mu}g/mL$) was increased by the adenylate cyclase inhibitor, SQ22536, and the cAMP-dependent protein kinase (A-kinase) inhibitor, Rp-8-Br-cAMPS. Treatment with RBLp increased the phosphorylation of VASP ($Ser^{157}$), an A-kinase substrate, which was also inhibited by SQ22536 and Rp-8-Br-cAMPS. It is thought that the RBLp-induced increases in cAMP contributed to the phosphorylation of VASP ($Ser^{157}$), which in turn resulted in an inhibition of ADP-induced platelet aggregation, thereby indicating that RBLp has an antiplatelet effect via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). Thus, RBLp may have therapeutic potential for the treatment (or prevention) of platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

Development of Kanjang (Traditional Korean Soy Sauce) Supplemented with Glasswort (Salicornia herbacea L.)

  • Kim, Joon-Kuk;Jeon, Bo-Young;Park, Doo-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.165-173
    • /
    • 2011
  • Five types of meju were prepared from 100% defatted soybean (DFSG0), a mixture of 90% DFS and 10% glasswort (DFSG1), a mixture of 80% DFS and 20% glasswort (DFSG2), a mixture of 70% DFS and 30% glasswort (DFSG3), and a mixture of 60% DFS and 40% glasswort (DFSG4). Five types of kanjang were separately prepared from the 5 types of meju by ripening in brine for 6 months. The contents of certain minerals (Mg, Ca, Fe, Mn, and Zn), organic acids (citric acid, malic acid) and the antioxidative effects in the kanjang were increased in proportion to the glasswort content in the meju. However, the free amino acid contents in the kanjang were reduced in proportion to the glasswort content in the meju. DFSG1- and DFSG2-kanjang did not show distinct differences from DFSG0-kanjang based on aroma, flavor, and taste that were compared simply by panel tests. The bacterial and fungal community in the fermented meju and kanjang was not affected by the addition of glasswort to the meju-making process. Bacteria belonging to the Lactobacillus and Bacillus genera and the Lactobacillus family predominated, and yeasts belonging to the Saccharomyces genus and fungi belonging to the Aspergillus genus predominated in the fermented meju and kanjang. In conclusion, the glasswort was a supplement that nutritionally improved the kanjang (except for free amino acid contents) but didn't influence the growth of microorganisms that are responsible for the fermentation of meju and kanjang.

Factors stimulating the Growth of Lactic acid Bacteria in Cucumber Juice (오이에 대(對)한 유산균(乳酸菌) 생육촉진(生育促進) 인자(因子)에 관(關)하여)

  • Kim, H.S.;Chun, J.K.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.35-39
    • /
    • 1968
  • Addition of one percent cucumber, as a Kimchi component, showed the stimulation of lactic acid fermentation, by reducing the lagphase, and resulted the early matured Kimchi. Alcohol-soluble fraction from cucumber serum accerelated the growth of Lactobacillus plantarum, p-1, p-2 newly isolated strains from cucumber pickle, but had no effect on the growth rate of Streptococus faecalis. The growth promoting activity was inactivated by dialysis against water and heat treatment at $120^{\circ}C$ for 10 minutes. Softness of cucumber tissues enables to extract easily out a substance, which is thought one of the important factors for the stimulation of me growth of Lactic acid bacteria.

  • PDF