• Title/Summary/Keyword: Lactic-acid Bacteria

Search Result 2,437, Processing Time 0.03 seconds

Conversion of Unsaturated Food Fatty Acids into Hydroxy Fatty Acids by Lactic Acid Bacteria

  • Kim, Myung-Hee;Park, Mee-Seung;Chung, Chang-Ho;Kim, Cheong-Tae;Kim, Youn-Soon;Kyung, Kyu-Hang
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • The ability of 19 lactic acid bacteria to produce hydroxy fatty acids (HFAs) from unsaturated food fatty acids (USFAs) was tested. HFAs are related to human ailments, including steatorrhea. All the cultures produced HFAs from USFAs, unless their growth was inhibited by free USFAs. Lactococcus lactis subsp. lactis KFRI 131 converted oleic, linoleic, and linolenic acid into 10-hydroxyoctadecanoic acid (10-HODA), 10-hydroxyoctadecaenoic acid (10-HODEA), and 10-hydroxyoctadecadienoic acid (10-HODDEA), respectively. Both a USFA and a surfactant were needed for the bacterium to convert the fatty acid into the corresponding HFA. It was apparent that the production of 10-HODA was growth-related, while that of 10-HODDEA was not. It was unclear whether the production of 10-HODEA was growth-related.

Optimization of Bread Fermentation with Lactic Acid Bactria & Yeast Isolated from Kimchi (김치로부터 분리한 유산균과 효모 혼합 발효액의 제빵 최적화)

  • 신언환;정성제
    • Culinary science and hospitality research
    • /
    • v.9 no.3
    • /
    • pp.130-140
    • /
    • 2003
  • The studies were carried out to optimize a new starter for bread fermentation. Two strains of lactic acid bacteria and yeast were isolated from Kimchi. These strains showed good condition for quality bread fermented. The strains identified as Leuconostoc mesenteroides, Lactobacillus brevis, Saccharomyces fermentati and Saccharomyces cerevisiae. The mixed culture of four strains was due to the synergistic effect by interaction of these strains.

  • PDF

Influences of Squid Ink Added to Low Salt Fermented Squid on Its Changes in Lactic Acid Bacteria (저염 오징어 젓갈의 숙성 중 오징어 먹즙 첨가가 젖산균의 변화에 미치는 영향)

  • Oh, Sung-Cheon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.678-684
    • /
    • 2013
  • This study measured the change of lactic acid bacteria during the ripening fermentation process of low salt fermented squid with no squid ink added. All study groups showed increase of Leuconostoc and rapid growth of total plate count at the beginning stage of ripening and the maximum microbial count showed at the optimum stage of ripening which gradually reduced after the optimum stage. It is believed that Lactobacillus occupied the major part of the total plate count after the optimum stage of the squid fermentation, and it was related to the quality after the optimized ripening stage. Streptococcus and Pediococcus were gradually increased until the optimum stage of the ripening, and then decreased rapidly. Yeasts were detected in the middle stage of the fermentation and rapid increase was shown after the last stage of the fermentation which suggests that yeasts participate in putrefaction of the low salt fermented squid. The change of lactic acid bacteria observed during the ripening fermentation of low salt fermented squid with squid ink added was that the total plate count increased until ripening middle stage but showed a tendency to slightly reduce after the middle stage. The length of time to reach the maximum value was longer than the no treatment groups. Among the lactic acid bacteria, Leuconostoc, Streptococcus and Pediococcus has increased until the middle stage of the ripening while Lactobacillus constantly increased to the end part of the ripening. Yeasts had no increasing in the early ripening stage, but after middle of the ripening, it started to increase. That kind of tendency was similar to the case of no treatment groups. However, the amount of lactic acid bacteria tended to be less than no treatment groups. The tendency of decreasing number of all bacteria in low salt fermented squid with squid ink added shows squid ink restricts the growth of all bacteria.

Application of lactic acid bacteria on fermentation quality in different stages of rye forage - an in-vitro approach

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Jung, Jeong Sung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.283-283
    • /
    • 2017
  • The objective of the present study is to analyze the lactic acid bacteria (LAB) effects on rye silage fermentation at different stages. Different stages (Booting, Heading, Flowering, and Late flowering stage) of rye were collected from the National livestock farm, National Institute of Animal Science, South Korea. Rye sample was inculcated with lactic acid bacteria and incubated at the anaerobic condition for three months. The nutrient profile such as crude protein (CP), Acid detergent fibre, Neutral detergent fibre and total digestibility nutrients were increased in both control and LAB inculcated samples at all the stages of rye forage. The pH of rye silage was reduced at both stages by LAB inoculation as compared with control. The lactate content was increased in all stages of rye sample by LAB. The acetate concentration and butyrate was reduced in LAB inoculated rye sample. However, acetate concentration was slightly high in LAB inculcated rye at heading and late flowering stage. The LAB population was greater in LAB inoculated rye sample as compared with control sample. However, the massive population was noted in booting stage of rye than the other stages. It indicates the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by lactate production. Overall results suggest that the isolated lactic acid bacterium is the potent strain that could be suitable for rye forage fermentation at different stages.

  • PDF

Isolation and Identification of Lactobacillus sp. Produced r-Aminobutyric Acid(GABA) from Traditional Salt Fermented Anchovy (멸치 젓갈로부터 r-Aminobutyric Acid(GABA)를 생성하는 Lactobacillus 속의 분리.동정)

  • 전재호;김현대;이홍수;류병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2004
  • This study was conducted to investigate the identification of lactic acid bacteria produced ν-aminobutyric acid(GABA) from traditional salt fermented anchovy. There was no appreciable difference in the number of lactic acid bacteria from fermented anchovy. Among the types of lactic acid bacteria, three strains of lactic acid bacteria produced ν-aminobutyric acid from those sample were identified temporary as name of Lactobacillus brevis BH-21, Lactobacillus rhamnosus BH-32 and Lactobacillus plantarum BH-38 by using gram positive identification(GPI) card and API 50 kit, respectively. 3 strains of Lactobacillus sp. were found to produce GAB A in the culture of filtrate. Lactobacillus brevis BH-21 produced GABA, some of which yielded 43.2 mg/mL GABA in the medium of 0.1% glucose, 0.1% yeast extract, 0.05% polypeptone, 0.002% MgSO$_4$$.$4H$_2$O, 0.001% FeSO$_4$$.$7H$_2$O, 0.01% NaCl, 0.1% monosodium glutamate, pH 6.0. This result suggests that Lactobacillus brevis BH-21 has the potential to be developed as a strain of GABA production.

Microbial Reduction in Kimchi Cabbage Leaves by Washing with Citric Acid and Ethanol (구연산과 에탄올 세척에 의한 배춧잎의 미생물 저감화)

  • Han, Eung Soo;Yang, Ji Hee
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.112-117
    • /
    • 2019
  • The purpose of this study is to develop a method to cultivate lactic acid bacteria (LAB) as a by-product in the fermentation of kimchi through the use of Chinese cabbage leaves. A method to reduce the initial number of microorganisms using citric acid and ethanol to wash cabbage leaves was investigated. In this experiment, Chinese cabbage leaves were washed using a mixture of 3% citric acid and 7% ethanol and the washed cabbage leaves were juiced and used as a sample. The total microorganisms of kimchi cabbage juice (KCJ) was reduced from log 6.53 CFU/g to log 3.69 CFU/g by washing with citric acid and ethanol, and lactic acid bacteria from log 4.40 CFU/g to log 2.01 CFU/g. The salinity of KCJ was appropriate for the growth of lactic acid bacteria but the pH was too low. The yield of washing, juice extraction, and total were 80.82%, 79.32%, and 64.11%, respectively. KCJ made by washing with citric acid and ethanol was good for the culture broth of lactic acid bacteria.

Microbial and Chemical Changes of Kimchies Containing Different Ingredients During Fermentation (재료를 달리한 김치의 발효중 미생물학적 및 화학적 변화)

  • 유영균
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.289-293
    • /
    • 1996
  • Population changes of aerobic bacteria and lactic acid bacteria and changes of pH, acidity, and total sugar content were creased from initial period of fermentation. Lactic acid bacteria Increased during the first one nay rapidly and thereafter they creased slowly thereafter. Acidity increased on the third day of fermentation. Acidity was very low In Kimchi containing both Total sugar content decreased gradually from initial period to late period of fermentation.

  • PDF

Inhibition of Intestinal Bacterial Enzymes by Lactic Acid Bacteria (유산균에 의한 장내미생물효소의 저해)

  • 김동현;한명주
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.169-174
    • /
    • 1995
  • By coculturing E. coli HGU-3 with Bifidobacterium KH-2 or Streptococcus faecalis HGO-7 with Bifidobacterium KH-2, the productivity of $\beta$-glucuronidase and $\beta$-glucosidase was inhibited. When lactulose, growth factor of lactic acid bacteria, was added into this medium, the productivity of these enzymes and pH of the medium were dramatically decreased. When intestinal microflora of human and rat were inoculated in the medium containing lactulose, the enyzme productivity and pH of the medium were dramatically decreased. By s.c. injecting DMH into mice, $\beta$-glucuronidase of intestinal bacteria was induced, but the production of the enzymes was inhibited by adminstering lactulose.

  • PDF

Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Fermentation Characteristic and Chemical Composition of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.525-530
    • /
    • 1999
  • Prior to ensiling Rhodesgrass (RG) and Italian ryegrass (lRG) were treated with lactic acid bacteria (LAB) or with LAB+cellulases to compare their fermentation characteristics and chemical compositions. LAB (Lactobacillus casei) was added to all ensiling materials (except the untreated control) of RG and IRG at a concentration of $1.0{\times}10^5\;cfu.g^{-1}$ fresh forage. The enzymes used were Acremoniumcellulase (A), Meicelase (M) or a mixture of both (AM). Each enzyme was applied at levels of 0.005, 0.01 and 0.02 % of fresh forage. The silages with each treatment were incubated at 20, 30 and $40^{\circ}C$ and stored for about 2 months. While no marked differences were found between the RG and IRG silages with various treatments on dry matter (DM), volatile basic nitrogen (VBN) and water soluble carbohydrate (WSC) contents, there were significant differences in pH value, and lactic acid and butyric acid contents. LAB inoculation did not affect the fermentation characteristics of either the RG or IRG silages. The combined treatments of LAB+cellulases improved the fermentation quality of both the RG and IRG silages as evidenced by the decrease in pH value and increase in lactic acid content. Increasing the amount of added cellulase resulted in a decrease in pH value and an increase in lactic acid content in both the RG and IRG silages. Cellulases A and AM had a greater effect than cellulase M on the fermentation quality of the RG and IRG silages. Incubation temperatures of 30 and $40^{\circ}C$ appeared to be more appropriate environments for stimulating good fermentation than $20^{\circ}C$.

The Potential Probiotic and Functional Health Effects of Lactic Acid Bacteria Isolated from Traditional Korean Fermented Foods (한국 전통발효식품에서 분리한 유산균의 프로바이오틱스 특성 및 건강기능성 연구)

  • Ohn, Jeong-Eun;Seol, Min-Kyeong;Bae, Eun-Yeong;Cho, Young-Je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.581-591
    • /
    • 2020
  • This study investigated the probiotic properties and physiological activities of Korean fermented foods such as sikhae, young radish kimchi, and bean-curd dregs. Among the isolated lactic acid bacteria, Pediococcus inopinatus BZ4, Lactobacillus plantarum SH1, Lactobacillus brevis SH14, Pediococcus pentosaceus YMT1, and Leuconostoc mesenteroides YMT6 demonstrated a greater than 60% survival rate at pH 2.5, along with an excellent survival rate even at 0.3% bile acid. These five bacteria showed strong flocculation ability in autoaggregation and coaggregation tests, indirectly clustering useful micro-organisms and inhibiting the attachment of pathogenic bacteria. In a cell surface hydrophobicity test, these bacteria showed adhesion to three solvents (ethyl acetate, chloroform, and xylene) and high hydrophobicity, thereby indicating excellent indirect cell adhesion to intestinal cells. The cell-free supernatants and intracellular extracts of the five lactic acid bacteria showed antioxidative activity in the form of 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability and lipid peroxidation inhibition. Antimicrobial activities were also observed in four pathogenic bacteria, namely E. coli KCTC 2571, H. pylori HPKCTC B0150, L. monocytogenes KCTC 13064, and S. aureus KCTC 1916. These results demonstrate that these five lactic acid bacteria could be used as probiotics with antioxidant and antimicrobial properties.