• Title/Summary/Keyword: Lactic acid production

Search Result 1,049, Processing Time 0.023 seconds

Effects of Treating Whole-plant or Chopped Rice Straw Silage with Different Levels of Lactic Acid Bacteria on Silage Fermentation and Nutritive Value for Lactating Holsteins

  • Zhang, Y.G.;Xin, H.S.;Hua, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1601-1607
    • /
    • 2010
  • Two experiments were carried out to investigate i) the effects of four levels of lactic acid bacteria inoculants (LAB; 0, $2{\times}10^5$, $3{\times}10^5$ and $4{\times}10^5$ cfu/g fresh forage) and two physical forms of rice straw (whole and chopped rice straw) on silage fermentation quality and nutritive value of rice straw (RS) silage for lactating Holsteins and ii) the effects of the replacement of corn silage (CS) with different inclusion levels (0, 25 and 50%) of LAB treated RS on lactating performance of Holstein dairy cows. Rice straw packed with stretch film was ensiled for 45 d. The results showed that the higher level of LAB inoculants in the silage quadratically decreased pH, $NH_3$-N and acetic acid concentrations and increased the contents of lactic acid and total organic acids. The CP content and DM losses in the silage declined linearly as the level of LAB addition was increased. Compared with whole-plant rice straw silage (WRS), chopped rice straw silage (CRS) dramatically reduced pH by 0.83. The concentrations of $NH_3$-N were similar in WRS and CRS and both were less than 50 g/kg of total N. Chopping rice straw before ensiling significantly enhanced the lactic acid concentration and total organic acids content whereas the concentration of acetic acid declined. The CP, NDF and ADF content of CRS was 13.4, 5.9 and 10.2% lower than in WRS, respectively. Except for butyric acid concentration, significant interaction effects of inoculation level and physical form of RS were found on all fermentation end-products. Our findings indicated that milk yield and composition were not affected by different level of RS inclusion. However, because of the lower cost of WRS, cows consuming a ration in which WRS was partially substituted for CS had 3.48 Yuan (75% CS+25% WRS) and 4.56 Yuan (50% CS+50% WRS) more economic benefit over those fed a CS-based ration. It was concluded that the chopping process and LAB addition could improve the silage quality, and that substitution of corn silage with RS silage lowered the cost of the dairy cow ration without impairing lactation performance.

Bile and Acid Tolerance of Lactic Acid Bacteria Isolated from Dadih and Their Antimutagenicity against Mutagenic Heated Tauco

  • Pato, Usman
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1680-1685
    • /
    • 2003
  • Antimutagenicity of milk cultured with lactic acid bacteria isolated from dadih on the mutagenicity of heated salty and sweet tauco was examined using streptomycin dependent (SD) 510 strain of Salmonella typhimurium TA 98 as a tester culture. Cultured milk samples exhibited widely antimutagenic activity against mutagenic heated salty and sweet tauco. Lc. lactis subsp. lactis R-22, Lc. lactis subsp. casei R-35, Lc. lactis subsp. casei R-52 and E. faecalis subsp. liquefaciens R-55 exhibited no inhibitory effect on the mutagenic heated salty tauco. Mutagenicity of heated sweet tauco was inhibited by cultured milks stronger than that of heated salty tauco. Milk cultured with Lc. lactis subsp. cremoris R-48, Leuc. mesentroides R-51 and Lc. lactis subsp. casei R-68 showed high inhibition against the mutagenicity of both heated salty and sweet taucos. Antimutagenic activity of the cultured milks against mutagenic heated tauco was attributed to the bacterial cells. Among the three strains which showed high antimutagenicity, only Leuc. mesentroides R-51 was tolerant to both acid and bile; so this strain can be used as probiotic in preventing the occurrence of mutagenesis caused by mutagenic heated food like tauco.

Isolation, Identification, and Characterization of a Bacteriocin-Producing Enterococcus sp. from Kimchi and Its Application to Kimchi Fermentation

  • Moon, Gi-Seong;Kang, Chang-Hoon;Pyun, Yu-Ryang;Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.924-931
    • /
    • 2004
  • A bacteriocin-producing lactic acid bacterium, which strongly inhibited the Lactobacillus plantarum recognized as an important acid spoilage microorganism in kimchi fermentation, was isolated from kimchi. From morphological, physiological, sugar fermentation, biochemical tests, and l6S rDNA sequencing results, the isolate was identified as an Enterococcus sp. and designated as Enterococcus sp. K25. The bacteriocin produced by Enterococcus sp. K25 inhibited several Gram-positive bacteria, including Lb. plantarum, whereas it did not inhibit Gram-negative bacteria and yeasts. Optimal temperature and pH for the bacteriocin production were $25^\circ{C}$ and 5.5, respectively. Enterococcus sp. K25 was applied to kimchi manufacturing alone and together with other preservatives (i.e., chitosan and fumaric acid). In addition, growth of lactic acid bacteria, pH, and titratable acidity (TA) were measured during aging at $5^\circ{C}$ and $10^\circ{C}$. Inoculation of Enterococcus sp. K25 together with fumaric acid showed the most synergistic effect on extension of kimchi shelf-life. Compared to control (no addition), the treatment prolonged the kimchi shelf-life up to 6 days, whereupon the eight-point TA value recognized as the edible limit was reached.

Effect of Growth Stimulating Agent in Lactic Acid Bacteria Fermented Food Prepared from Egg White Powder and Casein (난백분말과 카제인으로 만든 젖산균 발효식품에서 생육촉진물질의 효과)

  • Ko, Young-Tae;Lee, Eun-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.509-515
    • /
    • 1999
  • Lactic acid bacteria (LAB) fermented foods were prepared from egg white powder (EWP), casein and growth stimulating agents (GSA). The effects of GSA on acid production and growth of Lactobacillus were studied. The effects of GSA on sensory properties and viscosity of LAB fermented foods were also studied. Acid production by Lactobacillus was stimulated by addition of GSA (0.3% or 1%, W/V). Although stimulating effect differed among each GSA, some GSA increased the acidity up to the level of fermented milk. However, stimulating effect of GSA on viable cells was not noticeable. Acid production by L. acidophilus was generally higher than other Lactobacilli. The optimum concentration of GSA added to substrate was 1% (W/V). Sensory evaluation showed that the optimum fermentation time was 18hr. The sensory properties of GSA samples were evaluated as slightly lower than that of fermented milk because GSA samples showed whey separation and taste and smell of GSA. Apparent viscosity of GSA samples was significantly lower than that of fermented milk and control sample (p<0.05). There was no significant difference of apparent viscosity among GSA samples. GSA samples, fermented milk and control sample showed thixotropic flow characteristics.

  • PDF

Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage

  • Zhang, Ying Chao;Wang, Xue Kai;Li, Dong Xia;Lin, Yan Li;Yang, Fu Yu;Ni, Kui Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.254-263
    • /
    • 2020
  • Objective: The objective of this study was to investigate the effects of wilting and additives on the fermentation quality, structural and non-structural carbohydrate composition of mulberry silages. Methods: The selected lactic acid bacteria strains Lactobacillus plantarum 'LC279063' (L1), commercial inoculant Gaofuji (GF), and Trichoderma viride cellulase (CE) were used as additives for silage preparation. Silage treatments were designed as control (CK), L1, GF, or CE under three wilting rates, that is wilting for 0, 2, or 4 hours (h). After ensiling for 30 days, the silages were analyzed for the chemical and fermentation characteristics. Results: The results showed that wilting had superior effects on increasing the non-structural carbohydrate concentration and degrading the structural carbohydrate. After ensiling for 30 days, L1 generally had a higher fermentation quality than other treatments, indicated by the lower pH value, acetic acid, propionic acid and ammonia nitrogen (NH3-N) content, and the higher lactic acid, water soluble carbohydrate, glucose, galactose, sucrose, and cellobiose concentration (p<0.05) at any wilting rate. Wilting could increase the ratio of lactic acid/acetic acid and decrease the content of NH3-N. Conclusion: The results confirmed that wilting degraded the structural carbohydrate and increased the non-structural carbohydrate; and L1 exhibited better properties in improving fermentation quality and maintaining a high non-structural carbohydrates composition compared with the other treatments.

Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages

  • Yu, Hyun-Hee;Yoon, Gun Hee;Choi, Ji Hun;Kang, Ki Moon;Hwang, Han-Joon
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.804-812
    • /
    • 2017
  • This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness ($L^*$) and increased the redness ($a^*$) and, yellowness ($b^*$) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics.

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi;Lee, Jung-Hee;Lee, Hye-Sung;Bae, Eun-Ah;Huh, Chul-Sung;Ahn, Young-Tae;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.616-621
    • /
    • 2009
  • To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

Production of Mirin by Fusant Obtained Between Aspergillus oryzae and Aspergillus shirousamii (Aspergillus oryzae와 Aspergillus shirousamii간의 융합주에 의한 미림의 생산)

  • Shin, Dong-Bun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.430-437
    • /
    • 1993
  • This study was carried out for high quality mirin Production by fusant F-50. Cellularly fused between Aspergillus oryzae 9-12 and Aspergillus shirousamii 6082-60. The conventional and the improvement methods in Mirin-making by F-50 showed high level of total sugar, reducing sugar and amino-nitrogen of 42%, 38% and 0.18%, respectively. Free amino acids in Mirin were found to 387.2 mg% glutamic acid, 283.8 mg% arginine, 244.0 mg% leucine, 218.0 mg% aspartic acid, 231.1 mg% alanine, 168.3 mg% serine and 148 mg% phenylalanine. Organic acids in Mirin were contained: oxalic acid, citric acid, malic acid, succinic acid, lactic acid, acetic acid and propionic acid. Sugars such as glucose, maltose, isomaltose, maltotriose, ribose, isomaltotriose and isomatotertraose were also found in Mirin. The clouding formation of Mirin made by F-50 showed 0.03 alcohol clouding, 0.08 water clouding and negative heat clouding.

  • PDF