• Title/Summary/Keyword: Laboratory slope model test

Search Result 55, Processing Time 0.021 seconds

A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing (개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구)

  • Bhang, In-Hwang;Seo, Se-Gwan;Kim, Kwang-Leyol;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper presents the slope wall technique using soil improvement material for reinforced soil slope through laboratory scale model tests, and verifies the experimental results comparing with numerical analysis. In additional, case study in field has performed to investigate the deformation of reinforced soil slope for 6 months. As a result of laboratory scale model test, numerical analysis, and case study, the reinforcement effect of the slope wall technique using soil improvement material is sufficient to be constructed as reinforced soil slope. The technique shows the stable ratio (0.4%) of horizontal to vertical deformation in the surface loading.

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.

Analytical study on seepage behavior of a small-scale capillary barrier system under lateral no-flow condition

  • Byeong-Su Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • The model production for large-scale (lateral length ≥ 2.0 m) capillary barrier (CB) model tests is time and cost-intensive. To address these limitations, the framework of a small-scale CB (SSCB) model test under the lateral no-flow condition has been established. In this study, to validate the experimental methodology of the SSCB model test, a series of seepage analyses on the SSCB model test and engineered slopes in the same and additional test conditions was performed. First, the seepage behavior and diversion length (LD) of the CB system were investigated under three rainfall conditions. In the seepage analysis for the engineered slopes with different slope angles and sand layer thicknesses, the LD increased with the increase in the slope angle and sand layer thickness, although the increase rate of the LD with the sand layer thickness exhibited an upper limit. The LD values from the seepage analysis agreed well with the results estimated from the laboratory SSCB mode test. Therefore, it can be concluded that the experimental methodology of the SSCB model test is one of the promising alternatives to efficiently evaluate the water-shielding performance of the CB system for an engineered slope.

Stability Analysis of the Slopes (사면의 안정해석에 관한 연구)

  • 강우욱;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.58-70
    • /
    • 1989
  • The paper compared the Bishop methed to the Fellenius method in the analysis of slope stability. Laboratory model test was carried out in the case of seepage flow considered. The results obtained from this study were summarized as follows; 1. The slice pieces of 10 were enough to analysis the slope stability. 2. The safety factor. by the Fellenius method was lower than the Bishop method by the 96 to 97% in the case of no seepage flow and by the 95 to 96% in the case of seepage flow considered. 3. Besides the parameter of soil and slope, the safety factor of slope was influenced by the height of slope. This phenomena was distinct in the height of height less than 10 meters. 4. In the case of clay, there was no difference in the safety factor of slope between Fellenius and Bishop rnethod. The safety factors of slope with the seepage flow considered were lower than those with no see-page flow. 5. The influence of cohesion on the safety factor was more significant in the Bishop method than in the Fellenius method. 6. The slope failure of model test of A and B soil samples with high permeability coefficient was taken place slightly in vicinity of toe by the concentration of stress and gradually increased 7. Under condition of same slope height, the shapper the slope, the shorter the radius and the center of critical circle appered downward and finally failure of slope occured inside the slope.

  • PDF

Slope Stability Analysis by Rainfall Infiltration (강우침투에 따른 사면의 안정성 평가)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.29-38
    • /
    • 2011
  • The unsaturated layers by rainfall infiltration are not properly reflected in construction codes to do slope design. The objective of this paper is to analyze the slope behavior according to the saturation layer increase resulted from the rainfall infiltration, to do that the laboratory slope model apparatus was adopted. From the model apparatus, the variation of water content and strength parameters of the model slope were analyzed. The safety factors of model slope was decreased, if saturation layer was increased from 3.0m to 4.5m, which means ground water level 3m selected from construction codes makes higher safety level. Also, if the ground water level is located in soil surface, the lower safety level will show up. Therefore, to make the proper slope design, the experiments and analysis of variation of saturation layer is needed.

Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips

  • Keskin, Mehmet Salih;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.249-262
    • /
    • 2014
  • Tire chips and tire chips-soil mixtures can be used as alternative fill material in many civil engineering applications. In this study, the potential benefits of using tire chips as lightweight material to improve the bearing capacity and the settlement behavior of sand slope was investigated experimentally. For this aim, a series of direct shear and model loading tests were conducted. In direct shear tests, the effect of contents of the tire chips on the shear strength parameters of sand was investigated. Different mixing ratios of 0, 5, 10, 15 and 20% by volume were used and the optimum mixing ratio was obtained. Then, laboratory model tests were performed on a model strip footing on sand slope reinforced with randomly distributed tire chips. The loading tests were carried out on sand slope with relative density of 65% and the slope angle of $30^{\circ}C$. In the loading tests the percentage of tire chips to sand was taken as same as in direct shear tests. The results indicated that at the same loading level the settlement of strip footing on sand-tire chips mixture was about 30% less than in the case of pure sand. Addition of tire chips to sand increases BCR (bearing capacity ratio) from 1.17 to 1.88 with respect to tire chips content. The maximum BCR is attained at tire chips content of 10%.

Dynamic Response Characteristics of Embankment Model for Various Slope Angles (다양한 경사를 가지는 제방모형의 지반 증폭 특성)

  • Kim, Hoyeon;Jin, Yong;Lee, Yonghee;Kim, Hak-sung;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this study, the dynamic response characteristics of the embankment model were analyzed using shaking table experiments. Laminar shear box was used to minimize the boundary effect of the model. The ratio of the vertical length to horizontal length of the slopes were 1:1, 1:1.5, and 1:2. The sensor array which is consist of 12 accelerometers was used to measure acceleration time-histories at each location of the slope model. The dynamic response characteristics of the models were analyzed for sine wave, sinesweep wave, and artificial earthquake wave in this study. The experimental results show that the dynamic response of the embankment model is increased with the slope angle. Furthermore, the experimental setup used in this study was verified with the comparative analysis between experimental results and 1-D analytical simulation on the flat ground model.

Evaluation of The Seepage Behavior for Reinforced Embankment (보강제체사면의 침투거동평가)

  • 신방웅;안병철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.146-152
    • /
    • 2000
  • To estimate the behavior of reinforced and unreinforced embankment constructed on a impermeable foundation ground, a laboratory model test was performed for two types of soils and water level increasing velocity of a flood period. The experiment models were constructed with slopes of water level is 1.25cm/min, 2.5cm/min each. From model test results, as the slope of reinforced and unreinforced embankment was the slower, the more seepage line rised. In the unreinforced embankment, the rising velocity of water level was the faster, the larger the embankment failure was. And the reinforced embankment with geotextile was the more safe than the unreinforced embankment for seepage force.

  • PDF

Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests (실내시험을 이용한 저치환 보강지반의 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

Drainage Characteristics of Copper Slag Compaction Pile Installed in Clay Based on the Laboratory Consolidation Model Test (대형압밀시험기를 이용한 동슬래그 다짐말뚝의 배수 특성)

  • 천병식;정헌철;김경민;조한영
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.552-557
    • /
    • 2001
  • Copper slag is the by-producted material on the proceeding of refining the copper. To verify applications of copper slag to vertical drain material can substitute for the sands in ground improvement, laboratory soil tests and consolidation model tests were conducted. The results of consolidation model test was analyzed as the hyperbolic method. The hyperbolic method assumes that the settlement(s) versus time(t) behavior approaches a straight line describes a hyperbolic reaction. The inverse of the slope of the line would then yield the ultimate settlement. Through in this study, copper slag is compatible with vertical drain material as like sands. Copper slag compaction pile promote the consolidation settlement.

  • PDF