• 제목/요약/키워드: Laboratory model testing

검색결과 262건 처리시간 0.03초

Predicting the Digestible Energy of Rapeseed Meal from Its Chemical Composition in Growing-finishing Pigs

  • Zhang, T.;Liu, L.;Piao, X.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.375-381
    • /
    • 2012
  • Two experiments were conducted to establish a digestible energy (DE) content prediction model of rapeseed meal for growing-finishing pig based on rapeseed meal's chemical composition. In experiment 1, observed linear relationships between the determined DE content of 22 rapeseed meal calibration samples and proximate nutrients, gross energy (GE) and neutral detergent fiber (NDF) were used to develop the DE prediction model. In experiment 2, 4 samples of rapeseed meal selected at random from the primary rapeseed growing regions of China were used for testing the accuracy of DE prediction models. The results indicated that the DE was negatively correlated with NDF (r = -0.86) and acid detergent fiber (ADF) (r = -0.73) contents, and moderately correlated with gross energy (GE; r = 0.56) content in rapeseed meal calibration samples. In contrast, no significant correlations were found for crude protein, ether extract, crude fiber and ash contents. According to the regression analysis, NDF or both NDF and GE were found to be useful for the DE prediction models. Two prediction models: DE = 16.775-0.147${\times}$NDF ($R^2$ = 0.73) and DE = 11.848-0.131${\times}$NDF+0.231${\times}$GE ($R^2$ = 0.76) were obtained. The maximum absolute difference between the in vivo DE determinations and the predicted DE values was 0.62 MJ/kg and the relative difference was 5.21%. Therefore, it was concluded that, for growing-finishing pigs, these two prediction models could be used to predict the DE content of rapeseed meal with acceptable accuracy.

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

Experimental research on the propagation of plastic hinge length for multi-scale reinforced concrete columns under cyclic loading

  • Tang, Zhenyun;Ma, Hua;Guo, Jun;Xie, Yongping;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.823-840
    • /
    • 2016
  • The plastic hinge lengths of beams and columns are a critical demand parameter in the nonlinear analysis of structures using the finite element method. The numerical model of a plastic hinge plays an important role in evaluating the response and damage of a structure to earthquakes or other loads causing the formation of plastic hinges. Previous research demonstrates that the plastic hinge length of reinforced concrete (RC) columns is closely related to section size, reinforcement ratio, reinforcement strength, concrete strength, axial compression ratio, and so on. However, because of the limitations of testing facilities, there is a lack of experimental data on columns with large section sizes and high axial compression ratios. In this work, we conducted a series of quasi-static tests for columns with large section sizes (up to 700 mm) and high axial compression ratios (up to 0.6) to explore the propagation of plastic hinge length during the whole loading process. The experimental results show that besides these parameters mentioned in previous work, the plastic hinge of RC columns is also affected by loading amplitude and size effect. Therefore, an approach toward considering the effect of these two parameters is discussed in this work.

Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm

  • Zeng, Bo;Zhang, Jianhua;Zhang, Yuying;Yang, Xu;Dong, Jun;Liu, Wenxia
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.433-440
    • /
    • 2014
  • In this study, a method for the low-carbon active distribution system (ADS) planning is proposed. It takes into account the impacts of both network capacity and demand correlation to the renewable energy accommodation, and incorporates demand response (DR) as an available resource in the ADS planning. The problem is formulated as a mixed integer nonlinear programming model, whereby the optimal allocation of renewable energy sources and the design of DR contract (i.e. payment incentives and default penalties) are determined simultaneously, in order to achieve the minimization of total cost and $CO_2$ emissions subjected to the system constraints. The uncertainties that involved are also considered by using the scenario synthesis method with the improved Taguchi's orthogonal array testing for reducing information redundancy. A novel cuckoo search (CS) is applied for the planning optimization. The case study results confirm the effectiveness and superiority of the proposed method.

Predictive models of hardened mechanical properties of waste LCD glass concrete

  • Wang, Chien-Chih;Wang, Her-Yung;Huang, Chi
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.577-597
    • /
    • 2014
  • This paper aims to develop a prediction model for the hardened properties of waste LCD glass that is used in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. We also summarized the testing results of the hardened properties of a variety of waste LCD glass concretes and discussed the effect of factors such as the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. This study also applied a hyperbolic function, an exponential function and a power function in a non-linear regression analysis of multiple variables and established the prediction model that could consider the effect of the water-binder ratio (w/b), waste glass content (G) and age (t) on the concrete compressive strength, flexural strength and ultrasonic pulse velocity. Compared with the testing results, the statistical analysis shows that the coefficient of determination $R^2$ and the mean absolute percentage error (MAPE) were 0.93-0.96 and 5.4-8.4% for the compressive strength, 0.83-0.89 and 8.9-12.2% for the flexural strength and 0.87-0.89 and 1.8-2.2% for the ultrasonic pulse velocity, respectively. The proposed models are highly accurate in predicting the compressive strength, flexural strength and ultrasonic pulse velocity of waste LCD glass concrete. However, with other ranges of mixture parameters, the predicted models must be further studied.

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • 한국지반공학회논문집
    • /
    • 제15권3호
    • /
    • pp.71-81
    • /
    • 1999
  • 본 연구에서는 모래-벤토나이트 혼합토를 대상으로 혼합토의 비율 및 응력이력에 따라 비배수상태에서 삼축실험을 수행하였으며 그 결과 과압밀상태에서 발생하는 소성변형을 포함하는 구성모델을 적용하여 혼합토의 탄소성거동을 예측하였다. 비배수전단시험은 벤토나이트의 혼합비를 10, 15, 20%로 변화시키며 성형한 시료를 400kPa까지 등방압밀 시킨 후 유효구속압력을 감시켜, 압축시험은 과압밀비 1, 2, 4, 12에 대하여, 인장시험은 과압밀비 1. 4, 12에 대하여 수행하였다. 시험분석결과 p'-q평면상에서 벤토나이트의 혼합비가 15%이하인 경우는 모래와 실트에서 나타나는 상태변형선이 나타났으나 혼합비가 20%인 경우는 상태변형선이 뚜렷하지 않았을 뿐만 아니라 체적팽창 경향을 거의 보이지 않았다. 따라서 사질토의 거동에서 점토의 거동으로의 전이를 보이는 점토의 혼합비는 대략 20%정도 임을 알 수 있었다. 제안한 구성모델은 정규압밀상태의 시료에 대해서는 등방경화 구성관계식을 적용하였으며 과압밀상태의 시료에 대해서는 기준면과 항복면을 동시에 가정해 항복면 내부에서의 소성변형을 고려해 주는 비등방경화 구성관계식을 적용하였다. 본 연구 결과 제안한 구성관계식은 정규압밀상태 및 과압밀상태의 혼합토 거동을 비교적 적절히 예측할 수 있었다.

  • PDF

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가 (Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests)

  • 정경자;조성민;김홍종;정종홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Service Life Prediction of Concrete Structures Exposed to a Sulfuric Acid Environment

  • 전종규;문한영;전찬기;송종화
    • 콘크리트학회논문집
    • /
    • 제19권3호
    • /
    • pp.385-389
    • /
    • 2007
  • In this study, it was investigated the resistance of OPC, 60% GGBS, 20% PFA and 10% SF mortar specimens against sulfuric acid corrosion. As an index for degree of acid corrosion, the corrosion depth was evaluated. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders; 60% GGBS mortar specimen was the most resistant to sulfuric acid corrosion. From the laboratory testing of sulfuric acid corrosion, an empirical prediction model was suggested as a power function of time and the pH of sulfuric acid, and was applied to an assessment of concrete structures exposed to an acidic environment. It was found that the empirical model gave a more precise prediction of sulfuric acid deterioration of concrete rather than a conventional model, mostly used for predicting carbonation of concrete.