• 제목/요약/키워드: Laboratory Scale Test

검색결과 619건 처리시간 0.031초

PET 인공골재의 배수특성에 관한 실험적 연구 (Experimental Study on Drainage Characteristics of PET Aggregates)

  • 신은철;신희수;김경식;김기성;박정준
    • 한국지반신소재학회논문집
    • /
    • 제15권2호
    • /
    • pp.35-44
    • /
    • 2016
  • PET 인공골재의 배수특성 평가를 위하여 실내 수평투수실험, 실대형 수평투수실험을 실시하였다. 실내 수평투수실험은 PET 골재의 생산량에 따라 세 종류의 입도별로 분류하고, 분류된 PET 골재를 정해진 배합비에 의해 20가지로 분류하여 단계별 하중을 재하하면서 실시하였다. 또한 실내 수평투수실험에 의해 분석된 결과를 활용하여 재하하중에 따른 투수계수의 변화경향이 가장 적은 실험 유형의 배합비로 실대형 수평투수실험을 실시하였고, 실내 수평투수실험 결과와 비교하여 신뢰도를 평가하였다.

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

Scaling analysis of the pressure suppression containment test facility for the small pressurized water reactor

  • Liu, Xinxing;Qi, Xiangjie;Zhang, Nan;Meng, Zhaoming;Sun, Zhongning
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.793-803
    • /
    • 2021
  • The small PWR has been paid more and more attention due to its diversity of application and flexibility in the site selection. However, the large core power density, the small containment space and the rapid accident progress characteristics make it difficult to control the containment pressure like the traditional PWR during the LOCA. The pressure suppression system has been used by the BWR since the early design, which is a suitable technique that can be applied to the small PWR. Since the configuration and operating conditions are different from the BWR, the pressure suppression system should be redesigned for the small PWR. Conducting the experiments on the scale down test facility is a good choice to reproduce the prototypical phenomena in the test facility, which is both economical and reasonable. A systematic scaling method referring to the H2TS method was proposed to determine the geometrical and thermohydraulic parameters of the pressure suppression containment response test facility for the small PWR conceptual design. The containment and the pressure suppression system related thermohydraulic phenomena were analyzed with top-down and bottom-up scaling methods. A set of the scaling criteria were obtained, through which the main parameters of the test facility can be determined.

Numerical Simulation and Laboratory Test Analysis of Air Sparging for TCE Remediation

  • 김훈미;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.348-351
    • /
    • 2003
  • Trichloroethylene, which is one of the representative DNAPL, has been found in underground water sources as a result of the manufactural use, and disposal of the chemical. In this research, in situ air sparging method was chosen to reduce the TCE concentration from the source zone. The concentration reduction in the source zone resulting from air sparging is simulated using the modified STOMP Water-Air operational mode in a two dimensional axisymmetric domain and bench scale test is conducted to analyze the performance of air sparging. The results of laboratory tests are compared with numerical simulations.

  • PDF

Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring

  • Heinson Tania Dhu Graham
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2004
  • Numerical and laboratory studies have been conducted to test the ability of Electrical Resistance Tomography-a technique used to map the electrical resistivity of the subsurface-to delineate contaminant plumes. Two-dimensional numerical models were created to investigate survey design and resolution. Optimal survey design consisted of both downhole and surface electrode sites. Resolution models revealed that while the bulk fluid flow could be outlined, small-scale fingering effects could not be delineated. Laboratory experiments were conducted in a narrow glass tank to validate theoretical models. A visual comparison of fluid flow with ERT images also showed that, while the bulk fluid flow could be seen in most instances, fine-scale effects were indeterminate.

소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험 (A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator)

  • 엄범규;이세용;이영엽;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

Analytical study on seepage behavior of a small-scale capillary barrier system under lateral no-flow condition

  • Byeong-Su Kim
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.13-27
    • /
    • 2023
  • The model production for large-scale (lateral length ≥ 2.0 m) capillary barrier (CB) model tests is time and cost-intensive. To address these limitations, the framework of a small-scale CB (SSCB) model test under the lateral no-flow condition has been established. In this study, to validate the experimental methodology of the SSCB model test, a series of seepage analyses on the SSCB model test and engineered slopes in the same and additional test conditions was performed. First, the seepage behavior and diversion length (LD) of the CB system were investigated under three rainfall conditions. In the seepage analysis for the engineered slopes with different slope angles and sand layer thicknesses, the LD increased with the increase in the slope angle and sand layer thickness, although the increase rate of the LD with the sand layer thickness exhibited an upper limit. The LD values from the seepage analysis agreed well with the results estimated from the laboratory SSCB mode test. Therefore, it can be concluded that the experimental methodology of the SSCB model test is one of the promising alternatives to efficiently evaluate the water-shielding performance of the CB system for an engineered slope.

An experimental study of scale effect on the shear behavior of rock joints

  • Lee Tae-Jin;Lee Sang-Geun;Lee Chung-In;Hwang Dae-Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.156-161
    • /
    • 2003
  • Mechanical behavior of rock joints usually can be characterized by small-scale laboratory shear tests due to economical and technical limitations, but their applicability to the behaviour of rock mass has been always questioned by a number of researchers because of scale effect. Though there have been several researches regarding the scale effect, it has been a controversial problem how to apply the result of small-scale laboratory shear test directly to field design from different conclusions among researchers. In order to grasp the trend of scale effect of shear behavior, a series of direct shear tests on replicas of natural rock joint surfaces made of gypsum cement with different size and roughness were conducted and analyzed. Result showed that as the size of the specimen increased, average peak shear displacement increased, but average shear stiffness and average peak dilation angle decreased. As for the dependency of scale on shear strength, the degree of scale effect was dependent on normal stress and roughness of rock joint. For the condition of low normal stress and high roughness, decrease of average peak shear strength with increasing size of joint was evident.

  • PDF

COMPARISON OF THE FIRE SUPPRESSION PERFORMANCE OF HALON REPLACEMENT AGENTS

  • Kim, Andrew K.;Joseph Z. Su
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.542-549
    • /
    • 1997
  • HFC-227ea and HCFC Blend A were evaluated using full-scale fire tests to obtain information on their fire suppression performance, drop-in capability, thermal decomposition products and physical behaviour of the agent such as its flow characteristics in the piping system. Also, full-scale tests were conducted with Halon 1301 to provide a basis for comparison. Halon 1301, at concentrations of 5% to 7.5%, showed effective total-flooding fire- extinguishing performance for all test scenarios. HFC-227ea, at a design concentration of 7.6% or higher, and HCFC Blend A, at a design concentration of 12%, extinguished all fires in the test facility, however, these agents produced higher concentrations of acid gases than Halon 1301. The quantity of the acid gases generated during fire suppression was dependent on agent concentration, agent discharge time, fire type and size as well as extinguishment time.

  • PDF