• Title/Summary/Keyword: Laboratory Scale

Search Result 2,314, Processing Time 0.028 seconds

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Study on actual status investigation of safety management of laboratories -Centering on university, government research institution, and corporate affiliated research center- (연구실 안전관리 실태조사에 관한 연구 -대학, 정부 연구기관, 기업부설연구소 중심으로-)

  • Rie, Dong-Ho;Choi, Soon-Young;Lee, Hee-Young;Kim, Jong-In
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.83-91
    • /
    • 2008
  • In this study, actual status of safety management for the objects of 173 university, government research institution, and corporate affiliated research center was carried out through questionnaires. For unexpected accident status according to kinds, scale, and types of laboratories, frequency analysis using cross analysis and multiple replies analysis was used. The result of this study is judged to be used for laboratory safety education prevention programs, laboratory environment improvement, investment or improvement of laboratories through the actual safety management status of laboratories such as vulnerable works for generation of unexpected sudden accidents according to kind, scale, and type of laboratories, period of occurrence, prevention education, necessity for preliminary test, and cause of laboratory accidents.

Investigation of a Method Measuring Bond에s Work Index of Korean Kaolin by Laboratory Ball Mill (소형 Ball Mill에 의한 고령토의 분쇄 일지수 측정방법의 검토)

  • 심철호;강용식;서태수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.47-55
    • /
    • 1987
  • The purpose of this work is to establish the basic calibration data for the efficiency of grinding by investigating the Bond's Work Index employing Korean Kaolin as a reference mateial with the laboratory-scale ball mill. A small ordinary ball mill has a dimension of 133 inside diameter and 144mm long. The analysis of the experimental results in this work sets up a equivalent calibration method with the laboratory-scale ball mill to those with special mill. The theoretical expression, derived from the rate equation proposed by Miwa, is obtained to anticipitate the stable revolution number for the next grinding cycle. The proposed equation is more systematic and acurate than lshihara's empirical equation is more systematic and acurate than lshihara's empirical equation for the measurement of gindability of a ball mill.

  • PDF

Comparison of sericin produced through laboratory- and plant-scale extraction

  • Ye Eun Kim;Chun Woo Kim;In Chul Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.1
    • /
    • pp.63-71
    • /
    • 2023
  • In this study, the structural characteristics of sericin recovered from wastewater released from the silk textile industry (Plant sericin) were comparatively analyzed with those of sericin extracted from a silkworm cocoon produced in a laboratory (Lab sericin). To prepare Plant sericin, ethanol was added to wastewater (i.e., a sericin aqueous solution) after the degumming process to remove nonprotein materials, affording a sericin precipitate. To prepare Lab sericin, nonprotein materials were removed from a silkworm cocoon and sericin was subsequently extracted from the cocoon. Lab sericin and Plant sericin exhibited similar solution viscosities, gel strengths, and crystallinity indices, indicative of the similar molecular weights (MWs) of the two sericin samples. In the case of sericin powder, Plant sericin was more crystalline than Lab sericin due to its treatment with ethanol. The findings of this study revealed that sericin recovered from industrial wastewater can be used equally as its MW is similar to that of sericin obtained through laboratory-scale extraction.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

Single piles under cyclic lateral loads - Full scale tests and numerical modelling

  • Hocine Haouari;Ali Bouafia
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.21-34
    • /
    • 2023
  • In order to analyze the effect of the cyclic lateral loading on the response of a pile-soil system, a full-scale single steel pile was subjected to one-way cyclic loading. The test pile was driven into a bi-layered soil consisting of a normally consolidated saturated clay overlying a silty sandy layer, the site being submerged by water up to one meter above the mudline in order to reproduce the conditions of an offshore pile foundation. The aim of this paper is to present the main results of interpretation of the cyclic lateral tests in terms of pile deflections, bending moment, and cyclic P-Y curves. From these latter an absolute secant reaction modulus EAS,N was derived and a simple calculation model of the test single pile is proposed based on this modulus. Two applications of the proposed model are carried out, one with a 2D finite element modelling, and the second with a load transfer curves-based method.

Current status, challenges and prospects for pig production in Asia

  • Lu Wang;Defa Li
    • Animal Bioscience
    • /
    • v.37 no.4_spc
    • /
    • pp.742-754
    • /
    • 2024
  • Asia is not only the primary region for global pig production but also the largest consumer of pork worldwide. Although the pig production in Asia has made great progress in the past, it still is confronted with numerous challenges. These challenges include: inadequate land and feed resources, a substantial number of small-scale pig farms, escalating pressure to ensure environmental conservation, control of devastating infectious diseases, as well as coping with high temperatures and high humidity. To solve these problems, important investments of human and financial capital are required to promote large-scale production systems, exploit alternative feed resources, implement precision feeding, and focus on preventive medicine and vaccines as alternatives to antibiotics, improve pig breeding, and increase manure recycling. Implementation of these techniques and management practices will facilitate development of more environmentally-friendly and economically sustainable pig production systems in Asia, ultimately providing consumers with healthy pork products around the world.