• 제목/요약/키워드: Laboratory Code

검색결과 523건 처리시간 0.029초

ONE-DIMENSIONAL ANALYSIS OF THERMAL STRATIFICATION IN THE AHTR COOLANT POOL

  • Zhao, Haihua;Peterson, Per F.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.953-968
    • /
    • 2009
  • It is important to accurately predict the temperature and density distributions in large stratified enclosures both for design optimization and accident analysis. Current reactor system analysis codes only provide lumped-volume based models that can give very approximate results. Previous scaling analysis has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by jets modeled using integral techniques. This allows very large reductions in computational effort compared to three-dimensional CFD simulation. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was developed to implement such ideas. This paper summarizes major models for the BMIX++ code, presents the two-plume mixing experiment simulation as one validation example, and describes the codes' application to the liquid salt buffer pool system in the AHTR (Advanced High Temperature Reactor) design. Three design options have been simulated and they exhibit significantly different stratification patterns. One of design options shows the mildest thermal stratification and is identified as the best design option. This application shows that the BMIX++ code has capability to provide the reactor designers with insights to understand complex mixing behavior with mechanistic methods. Similar analysis is possible for liquid-metal cooled reactors.

Analysis of VVER-1000 mock-up criticality experiments with nuclear data library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Setiawan, Fathurrahman;Lemaire, Matthieu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.1-18
    • /
    • 2021
  • The criticality analysis of VVER-1000 mock-up benchmark experiments from the LR-0 research reactor operated by the Research Center Rez in the Czech Republic has been conducted with the MCS Monte Carlo code developed at the Computational Reactor Physics and Experiment laboratory of the Ulsan National Institute of Science and Technology. The main purpose of this work is to evaluate the newest ENDF/B-VIII.0 nuclear data library against the VVER-1000 mock-up integral experiments and to validate the criticality analysis capability of MCS for light water reactors with hexagonal fuel lattices. A preliminary code/code comparison between MCS and MCNP6 is first conducted to verify the suitability of MCS for the benchmark interpretation, then the validation against experimental data is performed with both ENDF/B-VII.1 and ENDF/B-VIII.0 libraries. The investigated experimental data comprises six experimental critical configurations and four experimental pin-by-pin power maps. The MCS and MCNP6 inputs used for the criticality analysis of the VVER-1000 mock-up are available as supplementary material of this article.

Design of Block Codes for Distributed Learning in VR/AR Transmission

  • Seo-Hee Hwang;Si-Yeon Pak;Jin-Ho Chung;Daehwan Kim;Yongwan Kim
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.300-305
    • /
    • 2023
  • Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute interdependent information among users and subsequently aggregate this information following training. In this paper, we present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be applied.

Characterization of the Bovine Endogenous Retrovirus β3 Genome

  • Xiao, Rui;Kim, Juhyun;Choi, Hojun;Park, Kwangha;Lee, Hoontaek;Park, Chankyu
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.142-147
    • /
    • 2008
  • We recently used degenerate PCR and locus-specific PCR methods to identify the endogenous retroviruses (ERV) in the bovine genome. Using the ovine ERV classification system, the bovine ERVs (BERVs) could be classified into four families. Here, we searched the most recently released bovine genome database with the partial nucleotide sequence of the pro/pol region of the BERV ${\beta}3$ family. This allowed us to obtain and analyze the complete genome of BERV ${\beta}3$. The BERV ${\beta}3$ genome is 7666 nucleotides long and has the typical retroviral organization, namely, 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3'. The deduced open reading frames for gag, pro, pol and env of BERV ${\beta}3$ en- code 507, 271, 879 and 603 amino acids, respectively. BERV ${\beta}3$ showed little amino acid similarity to other betaretroviruses. Phylogenetic analysis showed that it clusters with HERV-K. This is the first report describing the genetic structure and sequence of an entire BERV.

NTP-ERSN verification with C5G7 1D extension benchmark and GUI development

  • Lahdour, M.;El Bardouni, T.;El Hajjaji, O.;Chakir, E.;Mohammed, M.;Al Zain, Jamal;Ziani, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1079-1087
    • /
    • 2021
  • NTP-ERSN is a package developed for solving the multigroup form of the discrete ordinates, characteristics and collision probability of the Boltzmann transport equation in one-dimensional cartesian geometry, by combining pin cells. In this work, C5G7 MOX benchmark is used to verify the accuracy and efficiency of NTP-ERSN package, by treating reactor core problems without spatial homogenization. This benchmark requires solutions in the form of normalized pin powers as well as the vectors and the eigenvalue. All NTP-ERSN simulations are carried out with appropriate spatial and angular approximations. A good agreement between NTP-ERSN results with those obtained with OpenMC calculation code for seven energy groups. In addition, our studies about angular and mesh refinements are carried out to produce better quality solution. Moreover, NTP-ERSN GUI has also been updated and adapted to python 3 programming language.

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.

파력발전기 부유체설계를 위한 SPH와 ISPH 유체모델링 기법 비교 (Comparison of Fluid Modeling Methods Based on SPH and ISPH for a Buoy Design for a Wave Energy Converter)

  • 전철웅;손정현;양민석
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.94-99
    • /
    • 2017
  • The buoy of the wave energy converter moves by direct contact with the fluid. In order to design a buoy by using the numerical method, it is necessary to analyze not only the contact with the fluid but also the exact behavior of the fluid. In this paper, differences between weakly compressible smoothed particle hydrodynamics (WCSPH) and incompressible smoothed particle hydrodynamics (ISPH) are compared and analyzed for two-dimensional dam breaking simulation. ABAQUS, which is a commercial analysis program, is used for WCSPH analysis. A laboratory code is developed for ISPH analysis. The surface shape, the velocity, and the pressure pattern of the fluid are compared. The results of the laboratory code show the similar tendencies with those of ABAQUS, and there is a little difference in the pressure result.

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

Extension of the NEAMS workbench to parallel sensitivity and uncertainty analysis of thermal hydraulic parameters using Dakota and Nek5000

  • Delchini, Marc-Olivier G.;Swiler, Laura P.;Lefebvre, Robert A.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3449-3459
    • /
    • 2021
  • With the increasing availability of high-performance computing (HPC) platforms, uncertainty quantification (UQ) and sensitivity analyses (SA) can be efficiently leveraged to optimize design parameters of complex engineering problems using modeling and simulation tools. The workflow involved in such studies heavily relies on HPC resources and hence requires pre-processing and post-processing capabilities of large amounts of data along with remote submission capabilities. The NEAMS Workbench addresses all aspects of the workflows involved in these studies by relying on a user-friendly graphical user interface and a python application program interface. This paper highlights the NEAMS Workbench capabilities by presenting a semiautomated coupling scheme between Dakota and any given package integrated with the NEAMS Workbench, yielding a simplified workflow for users. This new capability is demonstrated by running a SA of a turbulent flow in a pipe using the open-source Nek5000 CFD code. A total of 54 jobs were run on a HPC platform using the remote capabilities of the NEAMS Workbench. The results demonstrate that the semiautomated coupling scheme involving Dakota can be efficiently used for UQ and SA while keeping scripting tasks to a minimum for users. All input and output files used in this work are available in https://code.ornl.gov/neams-workbench/dakota-nek5000-study.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.