• Title/Summary/Keyword: LabView Software

Search Result 127, Processing Time 0.032 seconds

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

Development of Mock Control Devices and Data Acquisition Apparatus for Power Tiller Training Simulator

  • Kim, YuYong;Kim, Byounggap;Shin, Seung-yeoub;Kim, Byoungin;Hong, Sunjung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.284-288
    • /
    • 2015
  • Training power tiller operators in safe farming is necessary to avoid farming accidents. With the continuing progress in computational technology, driving simulators have become increasingly popular for conducting such training. Purpose: The objective of this study is to develop mock control devices and data acquisition apparatus for a tiller simulator. Methods: Except for the stand and tail wheel adjusting levers, the mock control devices were developed using a tiller handle assay. The data acquisition apparatus was realized using an embedded data-logging device and LabVIEW, the system design software. Results: The control devices of a real handle assay were successfully mimicked by the mock operator control devices, which used sensors for the relevant measurements. The data from the mock devices were acquired and transmitted to the main computer at intervals of 10 ms via Wi-Fi. Conclusions: The developed mock control devices operate similar to real power tillers and can be utilized in power tiller training simulators.

PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection (시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩)

  • Cho Chul-Ho;Cho Woong;Hwang Seung-Yong;Ahn Yoo-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1261-1268
    • /
    • 2006
  • This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.

A Novel Linearization Method of Sin/Cos Sensor Signals Used for Angular Position Determination

  • Zivanovi, Dragan;Lukic, Jelena;Denic, Dragan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1437-1445
    • /
    • 2014
  • In this paper a novel method for angular position determination using sensors with sin/cos output and without an excitation signal, is presented. The linearization of the sensor transfer characteristic and digitalization of the measurement results are performed simultaneously with a goal to increase the measurement resolution. This improvement is particularly important for low angular velocities, and can be used to increase the resolution of incremental Hall, magnetic and optical sensors. This method includes two phases of sin/cos signal linearization. In the first linearization phase the pseudo-linear signal is generated. The second linearization phase, executed by the two-stage piecewise linear ADC, is an additional linearization of the pseudo-linear signal. Based on the LabVIEW software simulations of the proposed method, the contribution of each processing phase to a final measurement error is examined. After the proposed method is applied within $2{\pi}$ [rad] range, the maximal nonlinearity is reduced from 0.3307 [rad] ($18.9447^{\circ}$) to $3{\cdot}10^{-4}$ [rad] ($0.0172^{\circ}$).

Implementation of Real-Time Monitoring System for Overhead Contact Wire in Electric Railway (전차선로 검측을 위한 실시간 화상처리 시스템 구현)

  • Park, Young;Cho, Young-Hyeon;Lee, Ki-Won;Kwon, Sam-Young;Park, Hyun-Jun;Jang, Dong-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.543-544
    • /
    • 2006
  • This paper describes a simple real-time monitoring system for use in measurement subsystem of contact wire and geometry of overhead contact wire in electric railway. The system has been consists of a high speed CMOS camera with resolution $1024\;{\times}\;1280$ pixels, line type laser source with a power equal to 300 mW, and PC-based image acquisition system with PCI Express slot. National instrument LabVIEW (8.0) and vision acquisition software have been used in application programming interface for image acquisition, display, and storage with a frequency of sampling of 500 acquisitions per second.

  • PDF

Development of Laser Welding Technology for Commercial Vehicle Oil Pressure Sensor (상용차 오일압력 측정용 압력센서 제작을 위한 레이저용접기술)

  • Lee, Young-Min;Kim, Soon-Dong;Cho, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • Using a fiber laser heat source, an oil pressure sensor was fabricated to measure the pressure in commercial vehicles. A stepping motor was used for the rotational and translational motion in the diaphragms and hardware joining. Laser welding process algorism including shielding gas control and vision system was integrated by using LabVIEW software for the high quality welding and in-line monitoring purpose. For the maximum flexibility in pressure transmission to the pressure sensor, thin sheet metal diaphragm, $25{\sim}50{\mu}m$(SUS-316L), was used and the diaphragms were optimally designed with FEM analysis. The welded samples were cross-sectioned the observation showed that the maximum depth ratio was more than seven times of diaphragms. The maximum welding speed was measured to be as high as 50in/mm by the developed automation mechanism. The fabricated prototypes were tested for the proof pressure, spring constant and sealing. The FEM results of spring constant measurement was as accurate as up to 80% of the design value and the sensor was safely operated up to the nominal pressure of 10bars.

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.

Development of Indentation Training System for Pulse Diagnosis (맥진 가압 트레이닝 시스템 개발)

  • Lee, Jeon;Lee, Yu-Jung;Jeon, Young-Ju;Woo, Young-Jae;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.117-122
    • /
    • 2008
  • Although the pulse diagnosis is the one of the most important diagnostic process to traditional medical doctors, there is no proper communication tool between experts and trainees. In this paper, we have developed a indentation training system which consists of a hardware measuring indent pressure on artificial arm quantitatively and a software providing a indentation training program. The hardware for measurement of indent pressure profile includes 3 load cells embedded in the artificial arm, signal amplification part and digitization part, NI-USB 6009 with 200Hz sampling rate. For setting up a relationship table between weights and output voltages, 8 standard weights were used. To evaluate this hardware, 3 oriental medical specialists were involved and their indent pressure profile were recorded three times respectively. From these, it was found that pulse diagnosis process could be divided into 3 periods and the maximum load were $500g{\cdot}f$ approximately while doctors perform a pulse diagnosis. The indentation training program was implemented with LabView and designed to monitor the differences between the pressure profile of a expert and that of a trainee so to offer some visual feedback to the trainee. Also, this program could provide the trends of training performances. With this developed system, the education of pulse diagnosis is expected to be more quantitative and effective.

Development of OSL Dosimetry Reader (선량 판독용 OSL 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jung-Il;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Design and performance test results of a newly developed optically stimulated luminescence (OSL) measurement system are presented in this paper. Generally, different types of optical filters are used in OSL reader system to minimize the interference of the stimulation light in the OSL signal. For optically stimulation of $Al_2O_3:C$, we have arrived at an optimal combination of the filters, i.e., GG420 filter for filtering the stimulating light source, and a combined UG11 and BG39 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optically stimulation. By using various control boards, the OSL reader device was successfully interfaced with a personal computer. A software was developed to deliver required commands to operate the OSL reader by using the LabView program (National Instruments, Inc.). In order to evaluate the reliability and the reproducibility of newly designed-OSL reader. Performance testing of the OSL reader was carried out for OSL efficiency, OSL decay curve and signal to noise ratio of the standard $Al_2O_3:C$ OSL material. It was found to be comparable with that of commercial Riso reader system.

Development of Thermoluminescence and Optical Stimulated Luminescence Measurements System (열자극발광 및 광자극발광 측정장치의 개발)

  • Park, Chang-Young;Chung, Ki-Soo;Lee, Jong-Duk;Chang, In-Su;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • The thermoluminescence (TL) and optically stimulated luminescence (OSL) are commonly used to measure and record the expose of individuals to ionization radiation. Design and performance test results of a newly developed TL and OSL measurement system are presented in this paper. For this purpose, the temperature of the TL material can be controlled precisely in the range of $1{\sim}1.5^{\circ}C$ by using high-frequency (35 kHz) heating system. This high-frequency power supply was made of transformer with ferrite core. For optical stimulation, we have completed an optimal combination of the filters with the arrangement of GG420 filter for filtering the stimulating light source and a UG11 filter at the detecting window (PMT). By using a high luminance blue LED (Luxeon V), sufficient luminous intensity could be obtained for optical stimulation. By using various control boards, the TL/OSL reader device was successfully interfaced with a personal computer. A software based on LabView program (National Instruments, Inc.) was also developed to control the TL/OSL reader system. In this study, a multi-functional TL/OSL dosimeter was developed and the performance testing of the system was carried out to confirm its reliability and reproducibility.