• 제목/요약/키워드: LVQ2

검색결과 34건 처리시간 0.024초

SDN 환경에서 Learning Vector Quantization 알고리즘을 이용한 분산 컨트롤러 (Distributed controller using Learning Vector Quantization algorithm in SDN environment)

  • 유승언;임환희;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.207-208
    • /
    • 2018
  • 본 논문에서는 기계학습의 하나인 Learning Vector Quantization 알고리즘을 이용하여 컨트롤러 순서를 정하는 모델을 제안하였다. 제안한 모델은 모든 컨트롤러 정보를 수집하여 Learning Vector Quantization의 LVQ1와 LVQ2 기법을 이용하여 컨트롤러의 순서를 정한다. 이를 통해, 효율적인 컨트롤러 동기화가 이뤄질 것으로 기대된다.

  • PDF

A New Video Coding Algorithm using 3D-Subband Coding and Lattice Vector Quantization

  • Park, Joong-Han;Lee, Keun-Young
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.131-137
    • /
    • 1997
  • In this paper, we propose an efficient motion adaptive 3-dimensional (3D) video coding algorithm using 3D subband coding (3D-SBC) and lattice vector quantization (LVQ) for low bit rate. Instead of splitting input video sequences into the fixed number of subbands along the temporal axes, we decompose them into temporal subbands of variable size according to motions in frames. Each spatio-temporally splitted 7 subbands are partitioned by quadtree technique and coded with lattice vector quantization(LVQ). The simulation results show 0.1∼4.3dB gain over H.261 in peak signal to noise ratio (PSNR) at low bit rate(64Kbps).

  • PDF

신경회로망을 이용한 신호 자동식별기 구현 및 성능분석 (On the Performance Analysis of an Automatic Neural Network Signal Classifier)

  • 윤병수;양성철;남상원;오원천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-399
    • /
    • 1994
  • In this paper a feature-based automatic neural network signal classifier is presented, where five neural network algorithms such as MLP, RBF, LVQ2, MLP-Tree and LVQ-Tree are combined in parallel to classifiy various signals from their features, based on the majority vote method. To demonstrate the performance and applicability of the proposed signal classifier, some test results for the classification of synthetic waveforms and power disturbances are provided.

  • PDF

2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼 (Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition)

  • 한수환;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제3권3호
    • /
    • pp.241-252
    • /
    • 2000
  • 이 논문에서는 2차원 영상의 외곽선 정보를 이용하여 추출한 바이스펙트럼과 가중치 퍼지 분류기를 이용하여 영상의 이동, 회전, 크기 변화에 무관한 패턴 인식 기법을 제안하고, 그 인식 결과를 LVQ(Learning Vector Quantization)를 이용한 신경망 분류기와 비교하였다. 3차 큐물런트를 근간으로하는 바이 스펙트럼은 각 영상의 외각선 정보에 적용되어 15개의 특징값들을 추출한다. 이 특징 벡터들은 영상의 이동, 회전, 크기 변화에 무관한 특징을 가지며 2차원 평면 영상의 대표값으로 사용되어 패턴 분류를 위해 가중치 퍼지 분류기의 입력으로 들어간다. 서로 다른 8가지 비행기들의 평면 영상을 이용하여 실험한 결과들은 제안된 인식 시스템의 성능이 상대적으로 우수함을 보였다.

  • PDF

The Robot Arm Control by EMG Pattern Recognition

  • Kim, Joo-Woong;Jung, Kyung-Kwon;Park, Jin-Seong;Eom, Ki-Hwan;Son, Dong-Seol;Lee, Hyun-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.81.3-81
    • /
    • 2002
  • $\textbullet$ Contents 1 Introduction $\textbullet$ Contents 2 EMG Signals and Measurement $\textbullet$ Contents 3 Intelligent Algorithm $\textbullet$ Contents 4 Improved LVQ $\textbullet$ Contents 5 Experiment $\textbullet$ Contents 6 Conclusion

  • PDF

보철용 로봇 제어를 위한 지능 시스템 (The Intelligent system to control prosthetic robot)

  • 김주웅;공휘식;정성부;이정훈;박진성;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.21-24
    • /
    • 2002
  • We proposed the intelligent system to control prosthetic robot. The proposed intelligent system was used competitive network, SOFM and LVQ, and consisted of pre-processing part and associative part. A pre-processing part was processed EMG signal and associative part was outputted signal to control prosthetic robot. To verify the effectiveness, we adapted to 2 link manipulator for korean consonant.

  • PDF

Radial Basis 함수를 이용한 동적 - 단기 전력수요예측 모형의 개발 (The Development of Dynamic Forecasting Model for Short Term Power Demand using Radial Basis Function Network)

  • 민준영;조형기
    • 한국정보처리학회논문지
    • /
    • 제4권7호
    • /
    • pp.1749-1758
    • /
    • 1997
  • 전력수요의 예측은 예측기간에 따라 중장기 전력수요 예측과 단기 부하 예측으로 구분할 수 있다. 기존의 단기 부하예측은 주로 역전파 알고리즘(back propagation algorithm)다층퍼셉트론을 이용하여 예측을 하였으나 이는 학습시간이 많이 걸릴 뿐만 아니라 학습도중에 지역최소점(local minima)에 빠져 학습이 계속되지 못한다는 문제가 있다. 본 논문은 이러한 역전파 알고리즘의 문제점을 해결할 수 있는 방법으로 Radial Basis 함수(Radial Basis Function)를 이용하여 동적 단기부하 예측 모형을 제안한다. Radial Basis 함수는 하나의 은닉층(hidden layer)을 갖고 있으며, 전방향(feed-forward)학습을 한다는 특징이 있다. 본 논문에서 제안한 단기 부하 예측모형은 학습을 하기 위하여 시간대별 부하량을 클러스터링 하고, 이 클러스터의 중심값을 Radial Basis 함수의 은닉층으로 하여 학습을 한 다음 예측하고자 하는 패턴을 한 단위로 하여 시단대별로 예측하였다. 기존의 연구에서의 클러스터링 방법으로는 통계학의 K-Means 방법이나 Kohonen의 LVQ(Learning Vector Quantization)을 주로 이용하였으나 본 논문에서는 패턴의 분류에 있어서 다른 알고리즘보다 편차가 작은 Pal, et. al.의 GLVQ(Generalized LVQ) 알고리즘을 이용하였다. 본 논문에서 이용한 데이타는 1995년 3월 1일-3일, 6월 1일-3일, 7월 1일-3일, 9월 1일-3일, 11월 1일-3일의 72시간 데이타를 입력하여 월별 4일의 24시간의 예측시간으로 예측하였다. 실험결과 월별 1일과 3일까지의 학습데이타로 1시간 후의 부하량을 24시간동안 예측한 결과 1.3795%의 평균 오차율로 예측하였다.

  • PDF

패턴 인식을 위한 감독학습을 사용한 IAFC( Integrated Adaptive Fuzzy Clustering)모델 (IAFC(Integrated Adaptive Fuzzy Clustering)Model Using Supervised Learning Rule for Pattern Recognition)

  • 김용수;김남진;이재연;지수영;조영조;이세열
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.153-157
    • /
    • 2004
  • 본 논문은 패턴인식을 위해 사용할 수 있는 감독학습을 이용한 supervised IAFC neural network 1과 supervised IAFC neural network 2를 제안하였다 Supervised IAFC neural network 1과 supervised IAFC neural network 2는 LVQ(Learning Vector Quantization)를 퍼지화한 새로운 퍼지 학습법칙을 사용하고 있다. 이 새로운 퍼지 학습 법칙은 기존의 학습률 대신에 퍼지화된 학습률을 사용하고 있는데, 이 퍼지화된 학습률은 조건 확률을 퍼지화 한 것에 근간을 두고 있다. Supervised IAFC neural network 1과 supervised IAFC neural network 2의 성능과 오류역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, 실험결과 supervised IAFC neural network 2 의 성능이 오류역전파 신경회로망의 성능보다 우수함이 입증되었다.

  • PDF

효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구 (A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making)

  • 이건창
    • Asia pacific journal of information systems
    • /
    • 제5권1호
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF