Fuzzy Classifier and Bispectrum for Invariant 2-D
Shape Recognition
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ABSTRACT

In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images
using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared
with the recognition process using one of the competitive neural algorithm, called a LVQ( Learning Vector
Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an
image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which
are invariant to shape translation, rotation and scale transformation, can be used to the represent
two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes
with eight different shapes of aircraft images are presented to illustrate a relatively high performance
of the proposed recognition system.
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1. Introduction

The studies on two-dimensional object recog-
nition problem have broad applications such as
satellite image identification, the characterization
of biomedical images, and the recognition of
industrial parts by robots for product assembly.
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Most of these shape recognition systems require
an object to be classified in situations where the
position, orientation and distance of the object are
time-varying. Additionally, the systems are re-
quired to be tolerant to noisy shapes results from
the segmentation of objects in varying backgrounds
as well as non-ideal imaging conditions. There
have been over a dozen prior research efforts to
improve the performance of system including Fou-

rier descriptors[1], autoregressive modeling method
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[2]-[4], dynamic alignment process of contour
sequences(5], and neural network approach[6]-[10].

The accuracy on pattern recognition problems,
while keeping simplicity of the overall system,
depends on two important factors. One is to extract
feature vectors representing a 2-D object image.
The feature vectors should have a small dimen-
sionality for real-time process, a similarity between
intraclasses. In this study, the boundary of a closed
planar shape is characterized by an ordered se-
quence that represents the Euclidean distance
between the centroid and all boundary pixels since
the overall shape information is contained in the
boundary of the shape. The amplitude of this or-
dered sequence is invariant to translation because
the Euclidean distance with the same starting
boundary pixel remains unchanged even an image
is shifted. Then, the contour sequence is normalized
with respect to the size of image. This normal-
ization includes the amplitude and the duration of
the contour sequence. Next the bispectrum based
on third order cumulants is applied to this nor-
malized contour sequence as a means of feature
selection. Higher order spectra (bispectrum, trispec—
trum) play an important role in digital signal proc-
essing due to their ability of preserving nonmini—
mum phase information, as well as information due
to deviations from Gaussianity and degrees of
nonlinearities in time series[11]. In the last few
years, bispectral analysis has been an active
research area. The applications of the bispectrum
extend over several disciplines. These applications
include ARMA modeling, analysis of bilinear mo-
dels, detection of phase coupling, signal reconstruc—
tion, image processing, radar signal detection, and
so on [12]-[14]. In the previous works for recog-
nition systems [8]-[9], the spectrum feature vectors
were extracted from power spectrum density of
contour sequence. However, the power spectrum
of contour sequence is corrupted by white gaussian
noise power E [n] = 8% in the all frequency com-
ponents where the bispectrum is not. The reason

for that will be shown in next section and Han’'s
work presents that the bispectral feature vector has
a better noisy tolerant characteristic[10]). There-
fore, in this investigation of 2-D object clas—
sification, the bispectral components of the
normalized contour sequence of an object image
are utilized as feature vectors. These bispectral
feature vectors have enough shape information to
represent each 2-D object, a property to be
invariant in size, shift, and rotation, and are used
as the input of fuzzy classifier.

Another factor is to select an appropriate clas-
sifier architecture for this particular recognition
task. In a recent year, the neural network algor-
ithms[8]-[10] and the fuzzy memberships functions
[15][16] are widely used. However, the hybrid
neural structure with back—propagation and counter—
propagation in [8] and with two fuzzy ART mod-
ules is relatively complicated, and the fuzzy
ARTMAP in [9] had used the five-voting strategy
(repeat five simulations with different ordering of
training patterns) to avoid the ordering influence
of training patterns. Moreover it is hard to select
an optimal matching of specific neural network
architecture for this kind of recognition system
among many different neural models. Thus, a
triangular fuzzy membership function and a weight-
ed fuzzy mean are utilized as a classifier. This
fuzzy classifier has a simple structure and it can
easily improve the classification results by a
weighted fuzzy mean extracted from analyzing the
bispectral feature vectors. In the experimental
procedure, the proposed fuzzy classifier is tested
with eight different shapes of aircraft images and
compared with the results of the previous work[10]
using a LVQ, one of the competitive neural
classifiers.

2. Shape Information and Bispectral Fea-
ture Extraction

In this portion of the study, the boundary of a



closed planar shape is characterized by an ordered
sequence that represents the Euclidean distance
between the centroid and all contour pixels of the
digitized shape. Clearly, this ordered sequence
carries the essential shape information of a closed
planar image. The bispectral feature extraction
from a closed planar image is done as follows.
First, the boundary pixels are extracted by using
contour following algorithm and the centroid is
derived[17][18]. The second step is to obtain an
ordered sequence in a clockwise direction, b(i), that
represents the Euclidean distance between the
centroid and all boundary pixels. Since only closed
contours are considered, the resulting sequential
representation is periodic as shown in equation (1).

o) =V (x;— 27+ (i~ 3.)*

b(N+i)=b(i) i=1,2,3,....N L

where (x.y:) © the centroid of an image, (x;y:)
: the contour pixel, N(period) : the total number
of boundary pixels.

This Euclidean distance remains unchanged to
a shift in the position of original image. Thus the
sequence b(i) is invariant to translation. The next
step is to normalize the contour sequence with
respect to the size of image. Scaling a shape results
is the scaling of the samples and duration of the
contour sequence. Thus the scale normalization
involves both an amplitude and a duration nor-
malization. The normalized duration of the se-
quence, 256 points fixed, is obtained by resampling
operation and function approximation. This is
shown in equation (2).

a(k)=b(kxN/256) k=1,2,3....,256 (2)

where N is the total number of boundary pixels.

After duration normalization, amplitude is di-
vided by sum of contour sequence and subtracted
the mean. It is shown in equation (3) and (4).

dik)=c(k)/s k=123,...,256 3

2XI9 WE! G4 QAR 2Bt THA 2RIIQ HIOIABER 243

d(k)=d(k)-mean(d(k)) (4)
where s=c(1)+c(2)+A(3)+......+ ¢ (256)

This sequence d(k) is invariant to translation
and scaling. In a forth, the bispectral feature
measurement is taken into the contour sequence.
The spectral density of the sequence d(k) utilized
in this paper is a third-order spectrum, called a
bispectrum. In general, the higher-order spectra
can address noise suppression, and preserve non-
minimum phase information as well as the infor-
mation due to degrees of nonlinearities[19]. Thus,
it has been widely used in the area of the iden-
tification of nonminimum phase systems, detection
of phase coupling and ARMA modeling[20]{21]. In
this study to 2-D shape recognition, the bispectrum
of contour sequence d(k), instead of power spec-
trum, is investigated for feature vectors because
of its better noisy-tolerant characteristic [10][19].
The nth order cumulants spectrum of contour
sequence d(k) is defined as
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where C; and F are cumulants and Fourier
transform of the sequence d(k), respectively. For
the special cases where n=2(power spectrum) and
n=3 (bispectrum) :
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If the observed contour sequence d(k)=s(k)+n(k)
where s(k). the zero mean contour sequence
without noise, n(k): the zero mean white gaussian
noise sequence and they are independent, equations
(6) and (7) becomes

= 1 M
=H{@)+52(35")
C{0)= E[s(R)s(k+ 1)] and

C.(0)=El n(k)n(k+ r)]=lvzia(r).
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where C((r,, 1) = Els(B)s(k+ r)s(k+15)] and
C(ry, o) = El n(Ryn(k+ r)n(k+ )1 =7,8(1), 1)

In equation (11), the noisy bispectrum H,= E
[n(k)*] = ¥, becomes zero because of skewness of
noisy density function, which means the bispec-
trum suppress the white noisy portion and the
extracted feature vectors have better noisy tol-
erance than the feature vectors from the power
spectrum. The performance comparisons with
noise for robust 2-D shape recognitions between
the power spectral and the bispectral features are
shown in [10]. And trispectrum with cumulants
order n=4 contains the noisy speétrum because of
kurtosis of noisy density and the higher spectra
with cumulant order more than n=4 have not
widely used yet because of their computational
complexity and the difficulty of feature extraction
from n-dimensional spectrum space. Therefore the
bispectrum is utilized for feature selection of 2-D
shape images in this paper.

The magnitude of bispectrum derived in a forth
step, | Ha(w1, w2) |, is unchanged even after the
sequence d(k) is circular shifted because the
magnitude of Fourier transform, | F(w) |, is not
changed[22]. Thus | H3(w1, w2) | is invariant to
the rotation of an image. Finally, the two dimen-
sional bispectral magnitude (256 by 256) is proj—
ected to vertical axis (w1) by taking mean value
of each column for feature extraction. It is shown
in equation (12).

hik]=[mean(kth column of |Hs(w;, wy)])]  (12)
where k=1,2,....256.

The first column and the row in the magnitude
of bispectrum contain all zero value because the
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normalized contour sequence has a zero mean.
It means h(1) is always zero. And the projected
bispectral components exceed to the sixteenth have
very small values (near zero). Thus, for fast rec-
ognition process with reliable accuracy, the proj-
ected bispectral components from the second to the
sixteenth (h(2), h(3),.....h({16)) are chosen to be used
as feature vectors to represent each image shape,
which are fed into a proposed fuzzy logic classifier
for recognition process. The overall bispectral
feature extraction process is shown in Fig. 1.

(a) Reference image

l

(b) Size & duration normalized contour sequence d(k) (x
axis : contour sequences, y axis ! distance)

(¢) Bispectrum magnitude(upper left coner:16 by 16) of
contour sequence d(k)

50
50
40
30
20
10
0 Tt
0 5 10 15

(d) Fifteen bispectral feature vectors obtained by vertical
projection: h(2), h(3), .., h(16) ( x axis : number of
sequences, y axis : bispectral amplitude after pro-
jection)

ad a1 J

Fig. 1. The overall bispectral feature extraction
process.

These feature vectors have the desired format
for planar image recognition system, which means
they are invariant to translation, rotation and
scaling of the shape and highly tolerant to the
noise. Fig. 2, 3 and 4 show the fifteen projected
bispectral feature vectors of rotated image, two
different shapes and 10dB noisy image.

& >

reference image 90 degree rotated image

3 \J

60 - 60
50 50
40 A 40
a0 q 30
20 20
10 4 10
0 — g

0 3 10 15 o b 10 15
Fifteen bispectral feature vectors: h(2),h(3}..,..h(16}

Fig. 2. Bispectral feature vectors extracted from
reference and rotated images.
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4 A

airplane image 1 airplane image 2

i
60 60
S0 30
40 40
3o 30
20 20
10 10
0 - Y T -0
0 5 10 18

0 5 10 15
Fifteen bispectral feature vectors: h{2),h(3).....h{16)

Fig. 3. Bispectral feature vectors extracted from
two different images.

3. Fuzzy Classifier Using Weighted Fuzzy
Mean

There are various methods to construct the
fuzzy classifier depending on the type of fuzzy
membership function and the calculation method of
mean value for membership grades{16]. The two
of most popular types for fuzzy membership func-
tion are triangle shown in Fig. 5 and trapezoid
shown in Fig. 6[23]. And the arithmetic mean
written in equation (13), the harmonic mean in
equation (14) and the weighted mean in equation
(15) are widely used for the calculation of mean
value[24].

/N
i/
02 [
L/

V- o

) 2 3

Fig. 5. An example of triangular form of a fuzzy

o

contour without noise

2

contour with 10dB SNR

\J

100 A
80

1 noise free
60 <

1 — — —10dB SNR
40 A .

] il
20 1 .

J - ./'\.\ o

0 - —
0 5 10 15

Fifteen bispectral feature vectors: h(2),h(3).....h(16)

Fig. 4. Bispectral feature vectors extracted from
the contour images without noise and with

10dB SNR.

membership function.

) » .
[\

/ \
WL/ N

02 7 —\

L/l A\
1 2 3 4
Fig. 6. An example of trapezoid form of a fuzzy

membership function.

B (%), palx), ..,ﬂn(x))=% glﬂ,-(x) (13)
hoa (e (x), (), .. {x)) = —~"1— (14)
zﬂ p#ix)



ho(u1(x), o), .. (2 wy, wy, .., w,)

= glﬂi(x) W, (glw, = 1)

where w: is an ith membership grade, w; is an

(15)

ith weight and n is the number of fuzzy member-

ship functions.

The proposed fuzzy classifier in this work uses
the triangular type of fuzzy membership function
and the weighted fuzzy mean method whose
variance is utilized for weights. The triangular type
of fuzzy membership functions is useful where the
only one reference feature set is available as in this
study. The one of advantage of the proposed fuzzy
classifier is not required the training stage unlike
the neual network structure. Only 120 fuzzy mem-
bership functions (15X8: the one membership
function for each of fifteen dimensional feature
values X the eight reference aircraft images) and
15 variances for each dimensional value of feature
vector are established for classification process.
This preprocessing step is much faster and easier
than that of the conventional training stage of
neural classifier. Another advantage of this fuzzy
classifier is the use of a variance as a weight. In
general, it is hard for the neural classifiers to
improve the performance results because they are
highly depend on the architectures, learning al-
gorithm and training order{91[25]. However, the
improvement of recognition results for the fuzzy
classifier is easily achieved with the varance
extracted from analyzing the characteristics of the
bispectral feature vectors. That is shown in next
section. Therefore the triangular fuzzy membership
function and the weighted fuzzy mean method with

variance are utilized as a fuzzy classifier.

4. Experimental Results and Performance
Assessment

The methodology presented in this paper, for the
recognition of closed planar shape, was evaluated
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with eight different shapes of aircraft. They are
shown in Fig. 7.

al 2 3 4
25 ¥ a7 8

Fig. 7. Eight different shapes of reference aircraft
images.

From each reference shape of aircraft, 36 noisy—
free patterns were generated by rotating the
original image with 30 degree increment and
scaling with three factor (1, 0.8 and 0,6). And forty
noisy corrupted patterns were made by adding four
different level of random gaussian noise (25dB,
20dB, 15dB, 10dB SNR : ten noisy patterns for each
SNR) to 36 noisy-free patterns. Thus the data set
for each reference aircraft image has 36 noisy-free
patterns and 1440 (40X 36) noisy corrupted pat-
terns, The number of total test patterns becomes
11808 (1476 X8 reference image). The sample
contour images for a4 and a7 with noise-free and
with 10dB SNR are shown in Fig. 8.

The construction of a fuzzy classifier and the
recognition process are done by as follows. First,
the fifteen fuzzy membership functions for each
reference aircraft image are established by using
each of the fifteen dimensional bispectral feature
values. The fuzzy membership functions are
defined by equation (16).

y,y=0.01 . (x,';'—j,,)'f'l
( =100+ F< x5< f4),

y,;=—0.01 . (x,','—fy)'i’l
(fi<x; <100+ 1),

(16)

otherwise y; =10
(where i=1~8, j=1~15)
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where 0.01 is the slope of a fuzzy membership
functions, x; is an input value for the jth feature
of the aircraft image ai, f; is an reference value
for the jth feature of the aircraft image ai and vy
is an membership grade for x;..

All of membership functions are configured as
a triangular type shown in Fig. 9. The number of
total fuzzy membership functions becomes 120 for

the eight different type of aircraft images.

i

noise-free

ad a7

Fig. 8. The sample contour images for a4 and a7
with noise~free and with 10dB SNR.

08 A

06 J

04 / \

02 /
L/

-30.608292

Membership Grade of yil .

69.391708 169.391708

A Feature Value, x11

Fig. 9. The fuzzy membership function, y11 ex-
tracted from the first feature value, f11 for
an aircraft image, a1 (f11= 69.391708).

In a second step, the variances for each of the
normalized fifteen dimensional feature values with
eight reference aircraft images are derived by
equation (17) and (18). The normalized feature va-
lues from reference aircraft al to a8 are shown in
Fig. 10. Those variances are utilized as the weights
for recognition process.

m; =% }i_'\x, (i=1..15) 17)

where m; is a mean of jth feature values for the
eight different aircraft images and x; is a jth
feature value for aircraft image ai.

v7; =-é_ g:\(xﬁ—mj)z (7=1..15) (18)

where vr; is a variance of jth feature values for
the eight different aircraft images(al,a2,...,a8).

In the third, the fifteen bispectral feature values
of the incoming test aircraft image are applied to
the corresponding fuzzy membership function for
each of eight reference shapes and the membership
grades are computed by equation (16). The fifteen
membership grades for any one of eight reference
shapes present the degree of similarity with that
reference shape.

Finally the weighted mean values of the
membership grades for each of eight reference
aircraft shape are computed by equation (19) and
(20), and a reference shape of aircraft image having
the largest weighted mean value (the largest A
is chosen as a recognition result.

(j=1..158) (19
where wj; is a weight for the jth feature value.

w; = vr;

hi(y,l(x,l),ye(xa), “en .y,ls(les);
wy, Wy, ..., W;s) (20)

= lglyij(xij) cw;, (1=1..8)

where y; is an membership grade for the jth
feature value of the aircraft image ai computed by
equation (16), and A; is a weighted fuzzy mean
value for each of eight reference aircraft images.
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Fig. 10. Normalized amplitudes of bispectral features.

The experimental process was performed under
The
experiments of 2, 4, and 6 are performed by the

six different experimental environments.

proposed fuzzy classifier and the others are
performed by the neural classifier, a LVQ, used in
previous work[10]. These are as follows.

Experiment 1.

Neural classifier algorithm : LVQ1 with 8 output
clusters (one cluster for each reference shape).

Training data set : only the 8 reference aircraft

images.

Experiment 2.

Classifier algorithm . the weighted fuzzy mean
using variance.

Reference data set for membership function:
same as training data set of experiment 1.

Experiment 3.

Classifier algorithm:1L.VQl with 8 output
clusters (one cluster for each reference shape).

Training data set:8 reference patterns + 32
noisy patterns (4 noisy patterns with 25dB SNR
generated from each of 8 reference images).

Experiment 4.
Classifier algorithm: same as 2.

Reference data set for membership function:
average of training data set of experiment 3.

Experiment 5.

Neural classifier algorithm : an improved LVQ
algorithm called LVQ3 with 16 output clusters
(two clusters for each reference shape).

Training data set:8 reference patterns + 32
noisy patterns (4 noisy patterns with each of 25dB,
20dB, 15dB and 10dB SNR generated from each of
8 reference images).

Experiment 6.
Classifier algorithm ' same as 2.
Reference data set for membership function:

average of training data set of experiment 5.

Under each of six different experimental en-
vironments, 11808 of total test patterns (1476
patterns for each reference image) were evaluated.
The overall classification results of experiments
1-6 are summarized in table 1 and 2. In table 1,
the best results of a proposed fuzzy classifier are
compared with the best results of a LVQ neural
classifier. In experiments of 4 and 6 for a fuzzy
classifier, the membership functions for each of
eight reference shapes are constructed with a
noise-free pattern and four of randomly selected
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Table 1. Comparison of the classification performance using best results.

Experiment 1 Exm@ent 2 Experiment 3 Exper.iment 4 Experiment 5 Expen:ment 6
LVaD) (Weighted (LVOD) (Weighted (LVQR) (Weighted
Fuzzy Mean) Fuzzy Mean) Fuzzy Mean)
Noise—free 288/2838 288/288 288/288 288/288 288/288 288/283
(100%) (100%) (100%) (100%) (100%) (100%8)
9548 2880/2880 2880/2880 2830/2880 2880/2880 2880/2880 2880/2880
(100%) (100%) (100%6) (100%) (100%) (100%)
20dB 2880/2880 288072880 2880/2880 2880/2880 2880/2880 2880/2880
(100%) (100%) (100%) (100%) (100%) (100%)
15dB 2880/2880 2880/2880 2880/2880 2880/2880 2880/2880 2880/2880
(100%) (100%) (100%) (100%) (100%) (100%)
10dB 2765/2880 2806/2830 2776/2880 2821/2880 2871/2880 2868/2830
(96.01%) (97.43%) (96.39%) (97.95%) (99.69%) (99.58%)
Total # of correctly 11693/11808 | 11732/11808 | 11704/11808 | 11749/11808 | 11799/11808 | 11796/11808
classified patterns(%6) (99.03%) (99.37%) (99.12%) (99.50%) (99.92%) (99.90%)
Table 2. The averaged classification results fuzzy classifier. And table 1 and 2 show that both
(Other cases are same as in table 1) classifiers perform well to recognize the eight
Exp. 3 | Exp. 4 | Exp. 5 | Exp. 6 different shapes of images where the signal power
LVQD | (WFM) | (LVQ3) | (WFM) is relatively larger than the noise power. However,
10dB 2767/2880| 2814/2880 | 2852/2880 |2859/2880) the experimental results of 1, 2, 3, and 4 with 10dB
(96.08%) | (97.71%) | (99.03%) | (99.279%) SNR show that a LVQ neural classifier is more
Total # of | 60z 11742 11780 11787 easily affected by noise. It means that the fuzzy
;:lc;rsr;elcf:.(le}(; /11808 | /11808 | /11808 | /11808 classifier measuring the weighted fuzzy mean is
patterns(96) (99.04%6) | (99.44%) | (99.76%) | (99.8296) more effective than a LVQ measuring the Euclid-

noisy patterns. It means the classification results
slightly depend on the selection of noisy patterns.
By the same case, in experiments of 3 and 5 for
a LVQ classifier, the classification results depend
on the selection of noisy patterns for training.
Therefore the five independent simulations with
different styles of noisy patterns keeping the same
SNR were evaluated and the results were averaged.
Those are shown in table 2.

The classification results with both of a LVQ
and a fuzzy classifier can be increased by adding
some noisy patterns to training process and to
construction of membership function, respectively.
These are shown in the results of experiment 1,
3 and 5 with the LVQ neural classifier and in the
results of experiment 2, 4 and 6 with the proposed

ean distance where the images are highly corrupted
by noise. And the structure and learning algorithm
of LVQ3 used in experiment 5 are more compli—-
cated than those of LVQ1 and this proposed fuzzy
classifier even the performance result is not sig—
nificantly different with a result of experiment 6.

5. Conclusion

The high recognition results including the per-
formance comparison with a LVQ show that the
weighted fuzzy classifier with the fifteen bispectral
feature vectors extracted from the normalized
contour sequences of planar shapes, performs well
to recognize the different shapes of aircraft even
the aircraft images are rotated, scaled and sig-
nificantly corrupted by noise. Additionally, the



fuzzy classifier can easily improve the recognition
results by analyzing the incoming feature vectors
and also it does not require the training stage as
the neural network classifier does.

In a near future, more realistic data such as the
satellite images or the biomedical images will be
tested and investigated for the practical applica—
tions. At the same time, the way to segment the
shape of image from noisy background should be
considered.
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