본 논문에서는 근전도 패턴인식을 수행하기 위한 혼합 LVQ 학습 알고리즘을 설계하였다. 제안된 혼합 LVQ 학습 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star학습법을 사용하는 변형된 C.p Net.이다. 제안된 C.p. Net.의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 클래스 층의 뉴런에 의해 종속 클래스로 분류하고, C.p. Net.의 종속 클래스 층과 클래스 층 사이의 연결강도는 분류된 종속 글래스를 클래스로 지정하는 학습을 하게 된다 근전도 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식 보다 우수한 분류성공률을 확인하였다.
본 논문에서는 LVQ 네트워크의 분류성능을 향상시키기 위하여 F.C.P. Net.을 이용하여 LVQ 학습알고리즘을 설계하였다. F.C.P. Net.의 입력층과 부류층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 마지막으로 패턴벡터를 부류층의 뉴런에 의해 종속부류로 분류하고, F.C.P. Net.의 부류층과 출력층 사이의 연결강도는 분류된 종속부류를 부류로 지정하는 학습을 하게 된다. 또한 부류의 수가 결정되기만 하면 입력층, 부류층, 출력층의 뉴런의 수를 결정 할 수 있도록 하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터를 학습벡터 및 시험 벡터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.
패턴매칭 기법에 근거한 음성 인식 시스템은 크게 clustering 과정과 labeling 과정으로 구성된다. 본 논문에서는 Kohonen의 featrue map 알고리즘과 LVQ2 알고리즘을 각각 clusterer와 labeler로 하는 음소인식 시스템을 구성한다. 구성된 인식시스템의 성능을 향상시키기 위해서 수정된 LVQ2알고리즘(MLVQ2)을 제안한다. MLVQ2는 selective learning, LVQ2, perturbed LVQ2 그리고 기존의 LVQ2의 4단계 학습과정으로 구성된다. 제안된 음소 인식 알고리즘의 성능을 평가하기 위하여 LVQ2와 MLVQ2를 각각 사용하여 6가지의 한국어 음소군에 대한 feature map을 만든다. 음소인식 실험결과, LVQ2와 MLVQ2를 사용하는 경우 각각 60.5%와 65.4%의 인식률을 얻을 수 있었다.
In this paper, we propose a binarization algorithm using LVQ-Merge clustering method for fast and accurate extraction of cells from cell images. The proposed method clusters pixel data of a given image by using LVQ to remove noise and divides the result into two clusters by applying a hierarchical clustering algorithm to improve the accuracy of binarization. As a result, the execution speed is somewhat slower than that of the conventional LVQ or Otsu algorithm. However, the results of the binarization have very good quality and are almost identical to those judged by the human eye. Especially, the bigger and the more complex the image, the better the binarization quality. This suggests that the proposed method is a useful method for medical image processing field where high-resolution and huge medical images must be processed in real time. In addition, this method is possible to have many clusters instead of two cluster, so it can be used as a method to complement a hierarchical clustering algorithm.
We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.
본 논문에서는 분류오차를 추출하고 학습하여 분류성능을 개선하는 LVQ 학습 알고리즘을 설계하였다. 제안된 LVQ학습 알고리즘은 초기기준백터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하는 학습네트워크이다. 분류오차가 발생되는 패턴백터로 추출하기 위하여 오차유발조건을 제안하였고, 이 조건을 이용하여 분류오차를 유발시키는 입력패턴벡터로 구성되는 패턴백터공간을 구성하여 분류오차가 발생되는 패턴백터를 학습시키므로 분류오차수를 감소시키고, 패턴분류성능을 개선하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터와 EMG 데이터를 학습백터 및 시험 백터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.
본 논문에서는 맛 인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 맛(쓴맛, 단맛, 신맛, 짠맛)학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 맛 활성화 신호의 세기가 사용되었고, 맛 패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하였고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 패턴벡터는 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 하였다. 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.
본 논문에서는 뇌파인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 뇌파 학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 알파리듬과 베타리듬의 주파수와 진폭이 사용되었고, 뇌파패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 된다. 뇌파 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.
본 논문에서는 LVQ 네트워크를 이용하여 3D 얼굴 영상을 인식하는 방법을 제안하였다. 제안한 방식의 LVQ 네트워크는 coded light로 획득한 얼굴 영상의 정면도를 학습 데이터로 사용하여 측면을 비롯한 다양한 각도에서의 얼굴 영상도 분류가 가능하다. 다양한 각도에서의 얼굴 영상을 분류하는 실험을 통하여 제안한 알고리즘의 유용성을 확인하였다.
IS-95와 IMT-2000 시스템에서 사용되고 있는 여러 종류의 길쌈 부호기를 부호율 1/2, 구속장 3인 길쌈 부호기로 한정하여, neural network의 LVQ(Learning Vector Quantization)과 PVSL(Prototype Vector Selecting Logic)을 적용하여 비터비 복호기에서 사용되는 PM(Path Metric)과 BM(Branch Metric) 메모리 수와 산술$.$비교 연산량을 줄임으로써 시스템의 단순화와 순방향 복호를 가능하게 한다. 구속장의 확장성 여부와 관계없이 간단한 응용으로 기존의비터비 복호기에 적용할 수 있는 새로운 비터비 복호기의 구조와 적용 알고리즘을 제시하고, 제시된 비터비 복호기의 합리성을 VHDL 시뮬레이션으로 검증 후, 기존의 복호기와의 성능을 비교 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.