• 제목/요약/키워드: LVQ

검색결과 107건 처리시간 0.024초

자기조직화 특징지도를 이용한 회전기계의 이상진동진단 (Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map)

  • 서상윤;임동수;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF

말초혈액영상에서 신경망 모델을 이용한 적혈구의 형태학적 변이 분류 (Morphological Variation Classification of Red Blood Cells using Neural Network Model in the Peripheral Blood Images)

  • 김경수;김판구
    • 한국정보처리학회논문지
    • /
    • 제6권10호
    • /
    • pp.2707-2715
    • /
    • 1999
  • Recently, there have been researches to automate processing and analysing images in the medical field using image processing technique, a fast communication network, and high performance hardware. In this paper, we propose a system to be able to analyze morphological abnormality of red-blood cells for peripheral blood image using image processing techniques. To do this, we segment red-blood cells in the blood image acquired from microscope with CCD camera and then extract UNL fourier features to classify them into 15 classes. We reduce the number of multi-variate features using PCA to construct a more efficient classifier. Our system has the best performance in recognition rate, compared with two other algorithms, LVQ3 and k-NN. So, we show that it can be applied to a pathological guided system.

  • PDF

Combination of Classifiers Decisions for Multilingual Speaker Identification

  • Nagaraja, B.G.;Jayanna, H.S.
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.928-940
    • /
    • 2017
  • State-of-the-art speaker recognition systems may work better for the English language. However, if the same system is used for recognizing those who speak different languages, the systems may yield a poor performance. In this work, the decisions of a Gaussian mixture model-universal background model (GMM-UBM) and a learning vector quantization (LVQ) are combined to improve the recognition performance of a multilingual speaker identification system. The difference between these classifiers is in their modeling techniques. The former one is based on probabilistic approach and the latter one is based on the fine-tuning of neurons. Since the approaches are different, each modeling technique identifies different sets of speakers for the same database set. Therefore, the decisions of the classifiers may be used to improve the performance. In this study, multitaper mel-frequency cepstral coefficients (MFCCs) are used as the features and the monolingual and cross-lingual speaker identification studies are conducted using NIST-2003 and our own database. The experimental results show that the combined system improves the performance by nearly 10% compared with that of the individual classifier.

이동형 머니퓰레이터의 숫자버튼 조작을 위한 시각제어 시스템 개발 (Development of a Visual Servo System in a Mobile Manipulator for Operating Numeral Buttons)

  • 박민규;이민철;주원동
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.92-100
    • /
    • 2004
  • A service robot is expected to be useful in indoor environment such as a hotel, a hospital and so on. However, many service robots are driven by wheels so that they cannot climb stairs to move to other floors. If the robot cannot use elevators. In this paper, the mobile manipulator system was developed, which can operate numeral buttons on the operating panel in the elevator. To perform this task, the robot is composed of an image recognition module, an ultrasonic sensor module and a manipulator. The robot can recognize numeral buttons and an end-effector in manipulator by the vision system. The Learning vector quantization (LVQ) algorithm is used to recognize the number on the button. The barcode mark on the end-effector is used to recognize the end-effector. The manipulator can push numeral buttons using informations captured by the vision system. The proposed method is evaluated by experiments.

유전자 알고리즘을 이용한 구조 적응형 자기구성 지도의 자식 노드 가중치 초기화 (Optimal Weight Initialization of Structure-Adaptive Self-Organizing Map with Genetic Algorithm)

  • 김현돈;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.89-93
    • /
    • 2000
  • 구조 적응형 자기구성 지도는 일반적으로 자기구성 지도의 구조가 초기에 결정되어 학습이 끝날 때까지 변하지 않기 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 중요한 문제이다. 이 논문에서는 기존의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도 알고리즘보다 빠르게 학습되었고, 인식률 면에서도 기존의 방법보다 높은 값을 나타내었으며, 자기구성 지도의 특성인 위상 보존도 잘 이루어졌다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

퍼지 벡터 양자화기 사상화와 신경망에 의한 화자적응 음성합성 (Speaker-Adaptive Speech Synthesis based on Fuzzy Vector Quantizer Mapping and Neural Networks)

  • 이진이;이광형
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 퍼지사상화(fuzzy mapping)와 FLVQ(fuzzy learning vector quantization)에 의한 사상된(mapped)코드북을 사용하는 화자적용 음성합성 알고리즘 을 제안하고, 기존의 음성합성결과와 비교한다. 입력화자와 기준화자의 코드북은 FLVQ 방법으로 작성한다. 사상된 코드북은 퍼지 히스토그램을 작성하여 이들을 선형 결합함으로써 얻어지는 퍼지 사상화에 의하여 작성된다. 대응 코드벡터의 퍼지 히스 토그램은 동일 입력벡터에 대해 선택된 입력화자의 코드벡터와 기준화자의 코드벡터 사이의 DTW(dynamic time warping)을 행하여 대응하는 코드벡터들의 소속값 (membership value)을 누적하여 얻는다. 음성합성시에는 사상된 코드북을 사용하여 입력화자의 음성을 퍼지벡터 양자화한 다음, FCM(fuzzy c means) 합성규칙을 사용하 여 사상된 코드북내의 코드벡터가 아닌 새로운 하나의 합성벡터를 얻게 되어 좀 더 입력화자에 적응된 합성음을 얻게 된다. 이 기술의 성능평가는 성별이 서로 다른 화 자를 입력화자 및 기준화자로 선정하여 입력화자의 음성에 가까운 정도로 평가하였으 며 그 결과 기존의 음성합성보다 입력화자에 더 적용된 합성음을 얻었다.

  • PDF

내시경 초음파 영상의 특징 분석 (Feature Analysis of Endoscopic Ultrasonography Images)

  • 김광백;강효주;김미정;김광하
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2009년도 춘계 종합학술대회 논문집
    • /
    • pp.390-397
    • /
    • 2009
  • 내시경 초음파는 초음파 진동자를 내시경 끝에 부착하여 그 주위의 장기를 관찰할 목적으로 개발된 의료기기이다. 내시경 초음파 검사는 점막하 종양을 직접 관찰 할 수 있어 종양의 병리 소견이 예측 가능하지만, 종양의 악성화 여부 등에 대해 주관적인 소견이 개입될 수 있는 문제점이 있다. 따라서 본 논문에서는 주관적인 소견으로 인해 나타나는 문제점을 객관화하여 질병의 정확도와 재현성을 높이기 위해 종양의 각 특징을 분석하는 방법을 제안한다. 제안된 방법을 적용하기 위해서 내시경 초음파 검사로 얻어진 초기 영상에서 분석에 필요한 초음파 영역을 추출한다. 초음파 영역은 여러 요인으로 인하여 명암도 값의 차이가 발생하는데, 이는 객관적인 분석에는 비효율적이다. 따라서 초기 검사 시에 매질로써 주입되는 물의 영역의 명암도를 기준으로 하여 초음파 영역의 명암도를 표준화 한다. 표준화 된 초음파 영역에서 전문의에 의하여 선택된 종양 영역에 LVQ 알고리즘과 비트 평면 분할 방법을 각각 적용하여 에코가 높은 spot 영역과 칼슘이 침착된 영역을 추출하고 분석한다. 종양 영역의 세밀한 분석을 위하여 명암도 값과, 종양 영역 내에서 전문의가 임의로 선택한 두 지점의 거리에 포함된 명암도 정보를 추출한다. 또한 선택된 종양의 악성도를 구분하기 위하여 종양 영역에서 외곽의 기울기를 계산한다. 내시경 초음파 영상에서 각 질병의 특징을 분석한 결과, 제시된 방법이 종양이 가지는 특징을 분석하는데 도움이 되는 것을 확인할 수 있었다.

  • PDF

임베디드 시스템에서 Eigenface를 이용한 얼굴인식 시스템 설계 (Face Recognition System using Eigenface on Embedded System)

  • 이수일;권기현;변형기;김덕은;최형진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.557-560
    • /
    • 2006
  • 최근 들어 정보통신 분야의 기술이 급격히 발전함에 따라 컴퓨터 사용의 증가와 임베디드 시스템 및 사회 각 분야에서 보안에 대한 의식이 점점 높아져 가고 있다. 각 분야에서 신체 정보를 이용한 연구들이 활발히 이루어지고 있는데 본 논문에서는 USB 캠을 이용한 실시간 얼굴 인식 방법에 대해서 제안한다. 카메라를 이용하여 얼굴을 인식하는 방법은 현재까지 여러 가지 방법들이 제시되어 왔지만 일반 pc에서 쓰는 USB 캠을 사용하여 제약 조건 없고 안정적인 인식 방법은 아직까지 나와 있지 않다. 얼굴영역을 주성분 변수로 변환하여 영상의 명암, 얼굴위치, 얼굴의 영역을 추출할 수 있는 기존의 시스템들이 많이 연구되어 왔는데 본 논문에서 제안된 방법에서는 일상생활에서 흔히 쓰는 USB 캠을 사용하여 기존의 CCTV와 같은 고가의 하드웨어를 대체하며 보다 효율적인 성능을 위하여 얼굴을 식별하기 위해 LVQ, FCMA, RBF 알고리즘을 적용한 시스템을 설계한다.

  • PDF

웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network)

  • 임동수;양보석;안병하;;김동조
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

KOREAN CONSONANT RECOGNITION USING A MODIFIED LVQ2 METHOD

  • Makino, Shozo;Okimoto, Yoshiyuki;Kido, Ken'iti;Kim, Hoi-Rin;Lee, Yong-Ju
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1033-1038
    • /
    • 1994
  • This paper describes recognition results using the modified Learning Vector Quantization (MLVQ2) method which we proposed previously. At first, we investigated the property of duration of 29 Korean consonants and found that the variances of th duration were extremely big comparing to other languages. We carried out preliminary recognition experiments for three stop consonants P, T and K. From the recognition results, we defined the optimum conditions for the learning. Then we applied the MLVQ2 method to the recognition of Korean consonants. The training was carried out using the phoneme samples in the 611 word vocabulary uttered by 2 male speakers, where each of the speakers uttered two repetitions. The recognition experiment was carried out for the phoneme samples in two repetitions of the 611 word vocabulary uttered by another male speaker. The recognition scores for the twelve plosives were 68.2% for the test samples. The recofnition scores for the 29 Korean consonants were 64.8% for the test samples.

  • PDF