• Title/Summary/Keyword: LULC

Search Result 30, Processing Time 0.027 seconds

West seacoast wetland monitoring using KOMPSAT series imageries in high spatial resolution (고해상도 KOMPSAT 시리즈 이미지를 활용한 서해연안 습지 변화 모니터링)

  • Sunwoo, Wooyeon;Kim, Daeun;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.429-440
    • /
    • 2017
  • A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images were analyzed to detect the geographical changes in four different tidal flats in the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from the satellite images, which were used as the input of the temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps extracted from the KOMPSAT images indicate that these multispectral high-resolution satellite data is highly applicable to generate good quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the tidal flat area of Gyeonggi and Jeollabuk provinces was estimated to have changed due to tidal effects, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in Jeollanam province revealed that the social and environmental policies can effectively protect coastal wetlands from degradation. Therefore, monitoring for wetland change using high resolution KOMPSAT is expected to be useful to coastal environment management and policy making.

Level 3 Type Land Use Land Cover (LULC) Characteristics Based on Phenological Phases of North Korea (생물계절 상 분석을 통한 Level 3 type 북한 토지피복 특성)

  • Yu, Jae-Shim;Park, Chong-Hwa;Lee, Seung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.457-466
    • /
    • 2011
  • The objectives of this study are to produce level 3 type LULC map and analysis of phenological features of North Korea, ISODATA clustering of the 88scenes of MVC of MODIS NDVI in 2008 and 8scenes in 2009 was carried out. Analysis of phenological phases based mapping method was conducted, In level 2 type map, the confusion matrix was summarized and Kappa coefficient was calculated. Total of 27 typical habitat types that represent the dominant species or vegetation density that cover land surface of North Korea in 2008 were made. The total of 27 classes includes the 17 forest biotopes, 7 different croplands, 2 built up types and one water body. Dormancy phase of winter (${\sigma}^2$ = 0.348) and green up phase in spring (${\sigma}^2$ = 0.347) displays phenological dynamics when much vegetation growth changes take place. Overall accuracy is (851/955) 85.85% and Kappa coefficient is 0.84. Phenological phase based mapping method was possible to minimize classification error when analyzing the inaccessible land of North Korea.

Assessment of the Urban Heat Island Effects with LANDSAT and KOMPSAT-2 Data in Cheongju (LANDSAT과 KOMPSAT-2 데이터를 이용한 청주지역 도시열섬효과의 평가)

  • Na, Sang-Il;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • Land surface temperature (LST) is an important factor in human health, thermal environment, heat balance, global change studies, and as control for climate change. The objective of this study was to assess the influence of Urban Heat Island (UHI) Effects on the LST and NDVI in Cheongju, Korea. The aim was to evaluate the effect of urban thermal environment for LST comparison of satellite-derived and in situ measured temperature. In this study, LANDSAT TM and KOMPSAT scene were used. The results indicated that the minimum LST is observed over dense forest as about $21{\sim}25^{\circ}C$ and maximum LST is observed over industrial area of about $28{\sim}32^{\circ}C$. The estimated LST showed that industrial area, bare soils and built-up areas exhibit higher surface temperatures, while forest, water bodies, agricultural croplands, and dense vegetations have lower surface temperatures during the summer daytime. Result corroborates the fact that LST over land use/land cover (LULC) types are greatly influenced by the amount of vegetation and water bodies present. The LST of industrial area and urban center is higher than that of suburban area, so it is clearly proved that there are obvious UHIE in Cheongju.

Land Use Characteristics in the Kyungan Watershed by Analyzing Long-Term Land Cover Data (장기적 토지피복 분석을 통한 경안천 유역의 토지이용 특성)

  • Han, Mideok;Kim, Jichan;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • The use of land cover was sharply changed during 1975~2007 in the Kyungan watershed $(561.12 km^2)$. The changes occurred over an area of more than $227.65 km^2$ during the overall period at changing rates of 1.04% per year for water area, 1.79% per year for residential area, 2.99% per year for bare area, 3.03% per year for wetland area, 3.04% per year for grass area, 0.87% per year for forest and 2.32% per year for agriculture area. Water, residential, bare and wetland areas increased, while grass, forest and agriculture areas decreased during the last 32 years. BOD concentrations of representative sites for each sub-watershed continuously increased until the early 2000s as residential area increased with the highest discharged load, but decreased after the mid 2000s except upper Kyungan watershed. Such decline appears to be associated with the planning of Total Maximum Daily Load management for Gwangju city and expansion of waste water treatment plant. It is necessary to control land use/cover changes of the upper watershed and to prepare appropriate watershed management system for improvement in river environment including water quality, stream flow and bio-diversity.

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

Study of the Non-linear Relationships between Watershed Land Use and Biological Indicators of Streams - The Han River Basin - (유역 토지이용과 하천 생물지수의 비선형적 관계 연구 - 한강권역을 대상으로 -)

  • Park, Se-Rin;Lee, Jong-Won;Park, Yu-Jin;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.55-67
    • /
    • 2022
  • Land use is a critical factor that affects the hydrological characteristics of watersheds, thereby determining the biological condition of streams. This study analyzes the effects of land uses in the watersheds on biological indicators of streams across the Han River basin using a linear model (LM) and generalized additive model (GAM). LULC and biological monitoring data of streams were obtained from the Korean Ministry of Environment. The proportions of urban, agricultural, and forest areas in the watersheds were regressed to the three biological indicators, including diatom, benthic macroinvertebrate, and fish of streams. The estimated LM and GAM models for the biological indicators were then compared, using regression determination R2 and AIC values. The results revealed that GAM models performed better than the LM models in explaining the variances of biological indicators of streams, indicating the non-linear relationships between biological indicators and land uses in watersheds. Also, the results suggested that the indicator of macroinvertebrates was the most sensitive indicator to land uses in watersheds. Although non-linear relationships between watershed land uses and biological indicators of streams could vary among biological indicators, it was consistent that streams' biological integrity significantly deteriorated by a relatively low percentage of urban areas. Meanwhile, biological indicators of streams were negatively affected by the relatively high percentage of agricultural areas. The results of this study can be integrated into effective quantitative criteria for the watershed management and land use plans to enhance the biological integrity of streams. In specific, land uses management plans in watersheds may need more close attention to urban land use changes than agricultural land uses to sustain the biological integrity of streams.

Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model (GIS기반 InVEST모형을 이용한 네팔 Bagmati유역의 물생산량 산정)

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • Among various ecosystem services provided by the basin, this study deals with water yield (WY) estimation in the Bagmati basin of Nepal. Maps of where water used for different facilities like water supply, irrigation, hydropower etc. are generated helps planning and management of facilities. These maps also help to avoid unintended impacts on provision and production of services. Several studies have focused on the provision of ecosystem services (ES) on the basin. Most of the studies have are primarily focused on carbon storage and drinking water supply. Meanwhile, none of the studies has specifically highlighted water yield distribution on sub-basin scale and as per land use types in the Bagmati basin of Nepal. Thus, this study was originated with an aim to compute the total WY of the basin along with computation on a sub-basin scale and to study the WY capacity of different landuse types of the basin. For the study, InVEST water yield model, a popular model for ecosystem service assessment based on Budyko hydrological method is used along with ArcGIS. The result shows water yield per hectare is highest on sub-basin 5 ($15216.32m^3/ha$) and lowest on sub-basin 6 ($10847.15m^3/ha$). Likewise, built-up landuse has highest WY capacity followed by grassland and agricultural area. The sub-basin wise and LULC specific WY estimations are expected to provide scenarios for development of interrelated services on local scales. Also, these estimations are expected to promote sustainable land use policies and interrelated water management services.

Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed (토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로)

  • Park, Se-Rin;Choi, Kwan-Mo;Lee, Sang-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.94-104
    • /
    • 2019
  • In this study, we investigated the spatial variation in land use and topographic effects on water quality at the Geum river watershed in South Korea, using the ordinary least squares(OLS) and geographically weighted regression (GWR) models. Understanding the complex interactions between land use, slope, elevation, and water quality is essential for water pollution control and watershed management. We monitored four water quality indicators -total phosphorus, total nitrogen, biochemical oxygen demand, and dissolved oxygen levels - across three land use types (urban, agricultural, and forested) and two topographic features (elevation and mean slope). Results from GWR modeling revealed that land use and topography did not affect water quality consistently through space, but instead exhibited substantial spatial non-stationarity. The GWR model performed better than the OLS model as it produced a higher adjusted $R^2$ value. Spatial variation in interactions among variables could be visualized by mapping $R^2$ values from the GWR model at fine spatial resolution. Using the GWR model, we were able to identify local pollution sources, determine habitat status, and recommend appropriate land-use planning policies for watershed management.

Assessment of potential carbon storage in North Korea based on forest restoration strategies (북한 산림복원 전략에 따른 탄소저장량 잠재성 평가)

  • Wonhee Cho;Inyoo Kim;Dongwook Ko
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.204-214
    • /
    • 2023
  • This study aimed to conduct a comprehensive assessment of the potential impact of deforestation and forest restoration on carbon storage in North Korea until 2050, employing rigorous analyses of trends of land use change in the past periods and projecting future land use change scenarios. We utilized the CA-Markov model, which can reflect spatial trends in land use changes, and verified the impact of forest restoration strategies on carbon storage by creating land use change scenarios (reforestation and non-reforestation). We employed two distinct periods of land use maps (2000 to 2010 and 2010 to 2020). To verify the overall terrestrial carbon storage in North Korea, our evaluation included estimations of carbon storage for various elements such as above-ground, below-ground, soil, and debris (including litters) for settlement, forest, cultivated, grass, and bare areas. Our results demonstrated that effective forest restoration strategies in North Korea have the potential to increase carbon storage by 4.4% by the year 2050, relative to the carbon storage observed in 2020. In contrast, if deforestation continues without forest restoration efforts, we predict a concerning decrease in carbon storage by 11.5% by the year 2050, compared to the levels in 2020. Our findings underscore the significance of prioritizing and continuing forest restoration efforts to effectively increase carbon storage in North Korea. Furthermore, the implications presented in this study are expected to be used in the formulation and implementation of long-term forest restoration strategies in North Korea, while fostering international cooperation towards this common environmental goal.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.