• Title/Summary/Keyword: LTR retrotransposons

Search Result 10, Processing Time 0.027 seconds

Transposable Elements and Genome Size Variations in Plants

  • Lee, Sung-Il;Kim, Nam-Soo
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.87-97
    • /
    • 2014
  • Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.

Screening and Characterization of LTR Retrotransposons in the genomic DNA of Pleurotus eryngii (큰느타리버섯 유전체내 LTR Retrotransposon 유전자 탐색 및 특성연구)

  • Kim, Sinil;Le, Quy Vang;Kim, Sun-Mi;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • Transposable elements (TEs) are mobile DNA elements that often cause mutations in genes and alterations in the chromosome structure. In order to identify and characterize transposable elements (TEs) in Pleurotus eryngii, a TE-enriched library was constructed using two sets of TE-specific degenerated primers, which target conserved sequences of RT and RVE domains in fungal LTR retrotransposons. A total of 256 clones were randomly chosen from the library and their insert sequences were determined. Comparative investigation of the insert sequences with those in repeat element database, Repbase, revealed that 71 of them were found to be TE-related fragments with significant similarity to LTR retrotransposons from other species. Among the TE sequences, the 70 TEs were Gypsy-type LTR retrotransposons, including 20 of MarY1 from Tricholoma matsutake, 26 of Gypsy-8_SLL from Serpula lacrymans, and 16 of RMER17D_MM from mouse, whereas a single sequence, Copia-48-PTR, was found as only Copia-type LTR retrotransposon. Southern blot analysis of the HindIII-digested P. eryngii genomic DNA showed that the retrotransposon sequences similar to MarY1 and Gypsy-8_SLL were contained as high as 14 and 18 copies per genome, respectively, whereas other retrotransposons were remained low. Moreover, both of the two Gypsy retrotransposons were expressed in full length mRNA as shown by Northern blot analysis, suggesting that they were functionally active retrotransposons.

Divergent long-terminal-repeat retrotransposon families in the genome of Paragonimus westermani

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.221-231
    • /
    • 2003
  • To gain information on retrotransposons in the genome of Paragonimus westermani, PCR was carried out with degenerate primers, specific to protease and reverse transcriptase (rt) genes of long-terminal-repeat (LTR) retrotransposons. The PCR products were cloned and sequenced, after which 12 different retrotransposon-related sequences were isolated from the trematode genome. These showed various degrees of identity to the polyprotein of divergent retrotransposon families. A phylogenetic analysis demonstrated that these sequences could be classified into three different families of LTR retrotransposons, namely, Xena, Bel, and Gypsy families. Of these, two mRNA transcripts were detected by reverse transcriptase-PCR, showing that these two elements preserved their mobile activities. The genomic distributions of these two sequences were found to be highly repetitive. These results suggest that there are diverse retrotransposons including the ancient Xena family in the genome of P. westermani, which may have been involved in the evolution of the host genome.

Human Endogenous Retrovirus K (HERV-K) can drive gene expression as a promoter in Caenorhabditis elegans

  • Durnaoglu, Serpen;Kim, Heui-Soo;Ahnn, Joohong;Lee, Sun-Kyung
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.521-526
    • /
    • 2020
  • Endogenous retroviruses (ERVs) are retrotransposons present in various metazoan genomes and have been implicated in metazoan evolution as well as in nematodes and humans. The long terminal repeat (LTR) retrotransposons contain several regulatory sequences including promoters and enhancers that regulate endogenous gene expression and thereby control organismal development and response to environmental change. ERVs including the LTR retrotransposons constitute 8% of the human genome and less than 0.6% of the Caenorhabditis elegans (C. elegans) genome, a nematode genetic model system. To investigate the evolutionarily conserved mechanism behind the transcriptional activity of retrotransposons, we generated a transgenic worm model driving green fluorescent protein (GFP) expression using Human endogenous retroviruses (HERV)-K LTR as a promoter. The promoter activity of HERV-K LTR was robust and fluorescence was observed in various tissues throughout the developmental process. Interestingly, persistent GFP expression was specifically detected in the adult vulva muscle. Using deletion constructs, we found that the region from positions 675 to 868 containing the TATA box was necessary for promoter activity driving gene expression in the vulva. Interestingly, we found that the promoter activity of the LTR was dependent on che-1 transcription factor, a sensory neuron driver, and lin-15b, a negative regulator of RNAi and germline gene expression. These results suggest evolutionary conservation of the LTR retrotransposon activity in transcriptional regulation as well as the possibility of che-1 function in non-neuronal tissues.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants

  • Kim, Seungill;Choi, Doil
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.55-56
    • /
    • 2018
  • Long terminal repeat retrotransposons (LTR-Rs) are major elements creating new genome structure for expansion of plant genomes. However, in addition to the genome expansion, the role of LTR-Rs has been unexplored. In this study, we constructed new reference genome sequences of two pepper species (Capsicum baccatum and C. chinense), and updated the reference genome of C. annuum. We focused on the study for speciation of Capsicum spp. and its driving forces. We found that chromosomal translocation, unequal amplification of LTR-Rs, and recent gene duplications in the pepper genomes as major evolutionary forces for diversification of Capsicum spp. Specifically, our analyses revealed that the nucleotide-binding and leucine-rich-repeat proteins (NLRs) were massively created by LTR-R-driven retroduplication. These retoduplicated NLRs were abundant in higher plants, and most of them were lineage-specific. The retroduplication was a main process for creation of functional disease-resistance genes in Solanaceae plants. In addition, 4-10% of whole genes including highly amplified families such as MADS-box and cytochrome P450 emerged by the retroduplication in the plants. Our study provides new insight into creation of disease-resistance genes and high-copy number gene families by retroduplication in plants.

Transposable Elements Arrangement in Genome and Their Applications for Analysis of Evolutional Events

  • Maekawa, Hideaki
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.24-27
    • /
    • 2003
  • The ribosomal RNA gene (rDNA) cluster was located in the nucleolus organizer and was genetically determined as one locus. We speculated by using sequence differences in the functional rDNA unit that the segregation time between Chinese and Japanese types of B. mandarina is about three million years ago. The differences of the amount of inserted non-LTR retrotransposons, R1Bm and R2Bm, in rDHA cluster were used for the identification of B.mori strains. (omitted)

  • PDF

Biological Function and Structure of Transposable Elements (이동성 유전인자의 구조 및 생물학적 기능)

  • Kim, So-Won;Kim, Woo Ryung;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1047-1054
    • /
    • 2019
  • Transposable elements (TEs) occupy approximately 45% of the human genome and can enter functional genes randomly. During evolutionary radiation, multiple copies of TEs are produced by duplication events. Those elements contribute to biodiversity and phylogenomics. Most of them are controlled by epigenetic regulation, such as methylation or acetylation. Every species contains their own specific mobile elements, and they are divided into DNA transposons and retrotransposons. Retrotransposons can be divided by the presence of a long terminal repeat (LTR). They show various biological functions, such as promoter, enhancer, exonization, rearrangement, and alternative splicing. Also, they are strongly implicated to genomic instability, causing various diseases. Therefore, they could be used as biomarkers for the diagnosis and prognosis of diseases such as cancers. Recently, it was found that TEs could produce miRNAs, which play roles in gene inhibition through mRNA cleavage or translational repression, binding seed regions of target genes. Studies of TE-derived miRNAs offer a potential for the expression of functional genes. Comparative analyses of different types of miRNAs in various species and tissues could be of interest in the fields of evolution and phylogeny. Those events allow us to understand the importance of TEs in relation to biological roles and various diseases.

Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7

  • Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Imai, Hiroo;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.607-618
    • /
    • 2020
  • microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsamiR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.