• Title/Summary/Keyword: LTCC material

Search Result 214, Processing Time 0.022 seconds

Microwave Dielectric Properties of (Pb,Ca)[(Fe,Nb)Sn]$O_3$ with CuO-$Bi_{2}O_{3}$Additives (CuO-$Bi_{2}O_{3}$첨가에 의한 (Pb,Ca)[(Fe,Nb)Sn]$O_3$세라믹스의 마이크로파 유전 특성)

  • 하종윤;최지원;윤석진;윤기현;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.563-566
    • /
    • 2000
  • The effect of CuO and CuO-B $i_2$ $O_3$ additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$)[F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$were investigated to decrease the sintering temperature for usage of Low Temperature Co-firing Ceramics (LTCC). The (P $b_{0.45}$C $a_{0.55}$)[F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$ceramics was sintered at 11$65^{\circ}C$. In order to decrease the sintering temperature, CuO and Cuo-B $i_2$ $O_3$ were added in the (Pb,Ca)[(Fe,Nb)Sn] $O_3$ with CuO-B $i_2$ $O_3$. For the addition of 0.4 wt.% CuO, the sintered density and the dielectric constant of the ceramics were revealed the maximum values of the 6.06g/c $m^2$ and 83 respectively and temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. As increasing B $i_2$ $O_3$to the (Pb,Ca)[(Fe,Nb)Sn] $O_3$ with CuO-B $i_2$ $O_3$with 0.2 wt.% CuO, the sintered density, the $\varepsilon$$_{r}$ and the Q was decreased, and $\tau$$_{f}$ was minimized at 0.2 wt.% CuO, and 0.2 wt.% B $i_2$ $O_3$. For this composition, dielectric properties were $\varepsilon$$_{r}$ of 81, Q. $f_{0}$ of 4400 GHz, and $\tau$$_{f}$ of 5 ppm/$^{\circ}C$ at sintering temperature of 100$0^{\circ}C$. the relationship between the microstructure and properties of ceramics was studied by X-ray diffraction(XRD), scanning electron microscopy(SEM).copy(SEM).oscopy(SEM).copy(SEM).EM).

  • PDF

Effective of $Li_2CO_3$ and ZnBO for low temperature sintered $(Ba_{0.5},Sr_{0.5})TiO_3$ ceramics (BST 세라믹 저온소결에 $Li_2CO_3$와 ZnBO가 미치는 영향)

  • Kim, Se-Ho;You, Hee-Wook;Koo, Sang-Mo;Ha, Jae-Geun;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.297-297
    • /
    • 2007
  • The $(B_{0.5},Sr_{0.5})TiO_3$ ceramics, which added with low sintering materials $Li_2CO_3$ and ZnBO, was investigated for LTCC(low temperature co-fired ceramic) applications. To compare sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ respectively, we added 1, 2, 3, 4, and 5wt% of $Li_2CO_3$ and ZnBO to $(B_{0.5},Sr_{0.5})TiO_3$. For confirming the sintering temperature, the respective specimens were sintered from $750^{\circ}C$ to $1200^{\circ}C$ by $50^{\circ}C$. The case of $Li_2CO_3$ greatly lowered the sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ ($1350^{\circ}C$) below $900^{\circ}C$. The addition of ZnBO improved the loss tangent of $(B_{0.5},Sr_{0.5})TiO_3$. The crystalline structure of $LiCO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ and ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$ was analyzed with the X-ray diffraction (XRD) analysis. The dielectric permittivity and loss tangent of $Li_2CO_3$ doped BST and ZnBO doped BST were measured with the HP 4284A precision. From the electrical characterization, we respectively obtained the dielectric permittivity 1361, loss tangent $6.94{\times}10^{-3}$ at $Li_2CO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ (3wt%) and the dielectric constant 1180, loss tangent $3.70{\times}10^{-3}$ at ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$(5wt%).

  • PDF

Low-Temperature Sintering and Microwave Dielectric Properties of the $B_2O_3-$ and CuO-added $Ba(Mg_{1/3}Nb_{2/3})O_3$ Ceramics ($B_2O_3$ 와 CuO가 첨가된 $Ba(Mg_{1/3}Nb_{2/3})O_3$ 세라믹스의 저온소결과 마이크로파 유전특성 연구)

  • Lim, Jong-Bong;Son, Jin-Ok;Nahm, Sahn;Yu, Myeong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.838-841
    • /
    • 2004
  • [ $B_2O_3$ ] added $Ba(Mg_{1/3}Nb_{2/3})O_3$ (BBMN) ceramics were not sintered below $900^{\circ}C$. However, when CuO was added to the BBMN ceramic, it was sintered even at $850^{\circ}C$. The amount of the $Ba_2B_2O_5$ second phase decreased with the addition of CuO. Therefore, the CuO additive is considered to react with the $B_2O_3$ inhibiting the reaction between $B_2O_3$ and BaO. Moreover, it is suggested that the solid solution of CuO and $B_2O_3$ might be responsible for the decrease of the sintering temperature of the specimens. A dense microstructure without pores was developed with the addition of a small amount of CuO. However, a porous microstructure with large pores was formed when a large amount of CuO was added. The bulk density the dielectric constant $({\varepsilon}_r)$ and the Q-value increased with the addition of CuO but they decreased when a large amount of CuO was added. The variations of those properties are closely related to the variation of the microstructure. The excellent microwave dielectric properties of Qxf=21500 GHz, ${\varepsilon}_r=31$ and temperature coefficient of resonance frequency$({\tau}_f)=21.3\;ppm/^{\circ}C$ were obtained for the $Ba(Mg_{1/3}Nb_{2/3})O_3+2.0\;mol%B_2O_3+10.0$ mol%CuO ceramic sintered at $875^{\circ}C$ for 2h.

  • PDF

A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3 (Li2CO3 첨가에 따른 입방정 Bi1.5Zn1.0Nb1.5O7(c-BZN)의 상 변화 및 그에 따른 유전특성 변화 연구)

  • Yuseon Lee;Yunseok Kim;Seulwon Choi;Seongmin Han;Kyoungho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2023
  • A novel low-temperature co-fired ceramic (LTCC) dielectric, composed of (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4 (x=0.03-0.21), was synthesized through reactive liquid phase sintering of Bi1.5Zn1.0Nb1.5O7-xLi2CO3 ceramic at temperatures ranging from 850℃ to 920℃ for 4 hours. During sintering, Li2CO3 reacted with Bi1.5Zn1.0Nb1.5O7, resulting in the formation of Bi2Zn2/3Nb4/3O7, and LiZnNbO4. The resulting sintered body exhibited a relative sintering density exceeding 96% of the theoretical density. By altering the initial Li2CO3 content (x) and consequently modulating the volume fraction of Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7, and LiZnNbO4 in the final sintered body, a sample with high dielectric constant (εr), low dielectric loss (tan δ), and the temperature coefficient of dielectric constant (TCε) characterized by NP0 specification (TCε ≤ ±30 ppm/℃) was achieved. As the Li2CO3 content increased from x=0.03 mol to x=0.15 mol, the volume fraction of Bi2Zn2/3Nb4/3O7 and LiZnNbO4 in the composite increased, while the volume fraction of Bi1.5Zn1.0Nb1.5O7 decreased. Consequently, the dielectric constant (εr) of the composite materials varied from 148.38 to 126.99, the dielectric loss (tan δ) shifted from 5.29×10-4 to 3.31×10-4, and the temperature coefficient of dielectric constant (TCε) transitioned from -340.35 ppm/℃ to 299.67 ppm/℃. A dielectric exhibiting NP0 characteristics was achieved at x=0.09 for Li2CO3, with a dielectric constant (εr) of 143.06, a dielectric loss (tan δ) value of 4.31×10-4, and a temperature coefficient of dielectric constant (TCε) value of -9.98 ppm/℃. Chemical compatibility experiment with Ag electrode revealed that the developed composite material exhibited no reactivity with the Ag electrode during the co-firing process.