• Title/Summary/Keyword: LSTM algorithm

검색결과 201건 처리시간 0.023초

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.

딥러닝을 활용한 흔들림 영상 안정화 알고리즘 (Video Stabilization Algorithm of Shaking image using Deep Learning)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.145-152
    • /
    • 2019
  • 본 논문에서는 딥러닝을 활용한 흔들림 영상 안정화 알고리즘을 제안하였다. 제안하는 알고리즘은 기존 몇 가지 2D, 2.5D 및 3D 기반 안정화 기술과 다르게 딥러닝을 활용한다. 제안하는 알고리즘은 흔들리는 영상을 CNN 네트워크 구조와 LSTM 네트워크 구조를 통한 특징 추출 및 비교하여 이전 프레임과 현재 프레임 간의 특징점 위치 차이를 통해 특징점의 이동 크기와 방향의 반대로 영상을 변환하는 알고리즘이다. 흔들림 안정화를 위한 알고리즘은 각 프레임의 특징 추출 및 비교를 위해 Tensorflow를 활용하여 CNN 네트워크과 LSTM 구조를 구현하였으며, 영상 흔들림 안정화는 OpenCV open source를 활용해 구현하였다. 실험결과 영상의 흔들림이 상하좌우로 흔들리는 영상과, 급격한 카메라 이동이 없는 영상을 실험에 사용하여, 제안한 알고리즘을 적용한 결과 사용한 상하좌우 흔들림 영상에서는 안정적인 흔들림 안정화 성능을 기대할 수 있었다.

어텐션 알고리듬 기반 양방향성 LSTM을 이용한 동영상의 압축 표준 예측 (Video Compression Standard Prediction using Attention-based Bidirectional LSTM)

  • 김상민;박범준;정제창
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.870-878
    • /
    • 2019
  • 본 논문에서는 어텐션 알고리듬 (attention algorithm) 기반의 양방향성 LSTM (bidirectional long short-term memory; BLSTM) 을 동영상의 압축 표준을 예측하기 위해 사용한다. 자연어 처리 (natural language processing; NLP) 분야에서 순환적 신경망 (recurrent neural networks; RNN) 의 구조를 이용하여 문장의 다음 단어를 예측하거나 의미에 따라 문장을 분류하거나 번역하는 연구들은 계속되어왔고, 이는 챗봇, 음성인식 스피커, 번역 애플리케이션 등으로 상용화되었다. LSTM 은 RNN에서 gradient vanishing problem 을 해결하고자 고안됐고, NLP 분야에서 유용하게 사용되고 있다. 제안한 알고리듬은 BLSTM과 특정 단어에 집중하여 분류할 수 있는 어텐션 알고리듬을 자연어 문장이 아닌 동영상의 비트스트림에 적용해 동영상의 압축 표준을 예측하는 것이 가능하다.

LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로 (Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow)

  • 정현조;이재환;서지혜
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.81-94
    • /
    • 2022
  • 최근 고액의 실물자산이나 채권을 분할하여 여러 투자자가 공동으로 투자하는 이른바 조각투자가 인기를 얻고 있다. 2016년 설립된 뮤직카우는 음원 유통에 따른 저작권료 참여 청구권을 조각투자할 수 있는 서비스를 세계 최초로 시작하였다. 본 연구에서는 딥러닝 알고리즘 중 하나인 LSTM 모델을 사용하여 뮤직카우에서 거래되는 저작권료 참여 청구권의 가격을 예측하는 연구를 진행하였다. 청구권의 이전 가격과 거래량, 저작권료와 같은 청구권과 관련된 변수 외에도, 음악저작권료 참여 청구권 시장 상황을 나타내는 종합 지표와 경제 상황을 반영하는 환율, 국고채 금리, 한국종합주가지수도 변수로 사용하였다. 연구 결과 상대적으로 거래량이 낮은 조각투자의 사례에서도 LSTM 모델이 거래가격을 잘 예측하는 것을 확인할 수 있었다.

효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구 (Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System)

  • 이승용;서부원;박승민
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.321-327
    • /
    • 2023
  • 인공 지능이 발전함에 따라 예측 시스템은 우리의 삶에 필수적인 기술 중 하나로 자리를 잡았다. 이러한 기술의 성장에도 불구하고, 21세기 사거리 교통 체증은 계속해서 문제 되어 왔다. 본 논문에서는 Conv-LSTM(: Convolutional-Long Short-Term Memory) 알고리즘을 이용한 사거리 교통 체증 예측 시스템을 제안한다. 제안한 시스템은 교통 체증이 발생하는 사거리에 시간대별 교통 정보를 학습한 데이터를 모델링 한다. 시간의 흐름에 따라 기록된 교통량 데이터로 교통 체증을 예측하며. 예측된 결과를 기반으로 사거리 교통 신호를 제어하고, 일정한 교통량으로 유지한다. VDS(: Vehicle Detection System)센서를 활용하여 도로 혼잡도 데이터를 정의하고, 교통을 원활하게 하기 위하여 각각의 교차로를 Conv-LSTM 알고리즘기반 네트워크 시스템으로 구성하였다.

저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP (Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device)

  • 김범수;김민규;김정래;부성춘;이철수
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.119-124
    • /
    • 2022
  • IGS (international gnss service)에서는 GNSS (global navigation satellite system) 위성의 항법메시지에 적용할 수 있는 RTS (real-time service) 궤도 및 시계 보정정보를 제공한다. 하지만, 인터넷 단절이 발생하면 RTS 값을 수신할 수 없으므로, 안정적인 PPP (precise point positioning)를 수행하기 위해 신호 단절이 발생한 경우 RTS 보정정보를 예측해서 사용해야 한다. 본 논문에서는 실시간으로 신호 단절 구간에서 LSTM (long short-term memory) 알고리듬으로 궤도 및 시계 보정정보를 예측하여 PPP를 진행하였다. 연산 처리 속도가 빠르지 않은 Raspberry Pi (RPI)에 LSTM 알고리듬을 구현하여 예측성능을 분석하였다. 다항식 예측기법과 비교하여 LSTM은 장기간 예측에서 우수한 성능을 보였다.

LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구 (A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters)

  • 이주영
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

LSTM 알고리즘을 이용한 양식장 해수 상태 변화 예측 (Prediction of Sea Water Condition Changes using LSTM Algorithm for the Fish Farm)

  • 리타 리자얀티;황민태
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.374-380
    • /
    • 2022
  • 본 논문은 기계학습 기반의 LSTM(Long Short Term Memory) 알고리즘을 이용해 바다 양식장의 해수 상태 변화를 예측하는 연구 결과를 보여주고 있다. 바다 양식장의 해수 상태 정보를 수집하기 위해 용존산소량, 염도, 질소이온 농도 및 수온 측정 센서들을 사용해 하드웨어를 구현했으며, LoRa 통신을 이용해 클라우드 기반의 Firebase 데이터베이스로 전달해 저장하도록 구현하였다. 개발한 하드웨어를 이용해 통영과 거제 지역 양식장들 주변 해수 상태 정보들을 수집하였으며, 이들 실제 데이터셋을 사용한 학습 결과에다 LSTM 알고리즘을 적용하여 87%의 정확도를 보여주는 예측 결과를 얻어낼 수 있었다. 용존산소량을 비롯한 4가지 파라미터별 예측 결과를 사용자에게 제공하기 위해 Flask와 REST API를 사용했으며, 이러한 예측 결과는 어민들에게 바다 양식장의 해수 상태 변화를 미리 제공할 수 있어 어류 집단 폐사로 인한 큰 피해를 줄이는 데 도움이 될 것이라 기대한다.