• Title/Summary/Keyword: LSTM Algorithm

Search Result 200, Processing Time 0.018 seconds

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM (LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석)

  • Ju-Hyung Lee;Jun-Ki Hong
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 2022
  • Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Therefore, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'A'. According to the simulation results, it was confirmed that Bidirectional-LSTM(Bi-LSTM) compared to LSTM(Long Short-Term Memory) takes more simulation time about more than 50%, but the prediction accuracy of non-periodic time series data such as clothing product sales data is the same.

Video Stabilization Algorithm of Shaking image using Deep Learning (딥러닝을 활용한 흔들림 영상 안정화 알고리즘)

  • Lee, Kyung Min;Lin, Chi Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • In this paper, we proposed a shaking image stabilization algorithm using deep learning. The proposed algorithm utilizes deep learning, unlike some 2D, 2.5D and 3D based stabilization techniques. The proposed algorithm is an algorithm that extracts and compares features of shaky images through CNN network structure and LSTM network structure, and transforms images in reverse order of movement size and direction of feature points through the difference of feature point between previous frame and current frame. The algorithm for stabilizing the shake is implemented by using CNN network and LSTM structure using Tensorflow for feature extraction and comparison of each frame. Image stabilization is implemented by using OpenCV open source. Experimental results show that the proposed algorithm can be used to stabilize the camera shake stability in the up, down, left, and right shaking images.

Video Compression Standard Prediction using Attention-based Bidirectional LSTM (어텐션 알고리듬 기반 양방향성 LSTM을 이용한 동영상의 압축 표준 예측)

  • Kim, Sangmin;Park, Bumjun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.870-878
    • /
    • 2019
  • In this paper, we propose an Attention-based BLSTM for predicting the video compression standard of a video. Recently, in NLP, many researches have been studied to predict the next word of sentences, classify and translate sentences by their semantics using the structure of RNN, and they were commercialized as chatbots, AI speakers and translator applications, etc. LSTM is designed to solve the gradient vanishing problem in RNN, and is used in NLP. The proposed algorithm makes video compression standard prediction possible by applying BLSTM and Attention algorithm which focuses on the most important word in a sentence to a bitstream of a video, not an sentence of a natural language.

Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow (LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로)

  • Jung, Hyunjo;Lee, Jaehwan;Suh, Jihae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.81-94
    • /
    • 2022
  • Real estate and artworks were considered challenging investment targets for individual investors because of their relatively high average transaction price despite their long investment history. Recently, the so-called fractional investment, generally known as investing in a share of the ownership right for real-life assets, etc., and most investors perceive that they actually own a piece (fraction) of the ownership right through their investments, is gaining popularity. Founded in 2016, Musicow started the first service that allows users to invest in copyright fees related to music distribution. Using the LSTM algorithm, one of the deep learning algorithms, this research predict the price of right to participate in copyright fees traded in Musicow. In addition to variables related to claims such as transfer price, transaction volume of claims, and copyright fees, comprehensive indicators indicating the market conditions for music copyright fees participation, exchange rates reflecting economic conditions, KTB interest rates, and Korea Composite Stock Index were also used as variables. As a result, it was confirmed that the LSTM algorithm accurately predicts the transaction price even in the case of fractional investment which has a relatively low transaction volume.

Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System (효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구)

  • Seung-Young Lee;Boo-Won Seo;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.321-327
    • /
    • 2023
  • With the development of artificial intelligence, the prediction system has become one of the essential technologies in our lives. Despite the growth of these technologies, traffic congestion at intersections in the 21st century has continued to be a problem. This paper proposes a system that predicts intersection traffic jams using a Convolutional LSTM (Conv-LSTM) algorithm. The proposed system models data obtained by learning traffic information by time zone at the intersection where traffic congestion occurs. Traffic congestion is predicted with traffic volume data recorded over time. Based on the predicted result, the intersection traffic signal is controlled and maintained at a constant traffic volume. Road congestion data was defined using VDS sensors, and each intersection was configured with a Conv-LSTM algorithm-based network system to facilitate traffic.

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters (LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구)

  • Lee, Ju-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

Prediction of Sea Water Condition Changes using LSTM Algorithm for the Fish Farm (LSTM 알고리즘을 이용한 양식장 해수 상태 변화 예측)

  • Rijayanti, Rita;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.374-380
    • /
    • 2022
  • This paper shows the results of a study that predicts changes in seawater conditions in sea farms using machine learning-based long short term memory (LSTM) algorithms. Hardware was implemented using dissolved oxygen, salinity, nitrogen ion concentration, and water temperature measurement sensors to collect seawater condition information from sea farms, and transferred to a cloud-based Firebase database using LoRa communication. Using the developed hardware, seawater condition information around fish farms in Tongyeong and Geoje was collected, and LSTM algorithms were applied to learning results using these actual datasets to obtain predictive results showing 87% accuracy. Flask and REST APIs were used to provide users with predictive results for each of the four parameters, including dissolved oxygen. These predictive results are expected to help fishermen reduce significant damage caused by fish group death by providing changes in sea conditions in advance.