교통 혼잡으로 인한 사회적 비용이 증가하면서 도로 속도를 예측하기 위한 다양한 연구들이 진행되고 있다. 도로 속도 예측의 정확도를 향상시키기 위해서는 교통 돌발 상황을 고려할 필요가 있다. 본 논문에서는 교통 돌발 상황을 고려한 도로 속도 예측 기법을 제안한다. 제안하는 기법은 연결된 도로들이 미치는 영향을 반영하기 위해서 예측 도로의 속도 데이터 뿐만 아니라 연결된 도로들의 속도 데이터도 이용한다. 또한, 돌발 상황으로 인한 혼잡을 예측하기 위해 속도의 변화량을 분석한다. 연결된 도로와 타겟 도로의 속도 데이터를 LSTM의 입력 데이터로 이용하여 1차적으로 도로 속도를 예측한다. 교통 돌발 상황으로 도로의 규칙적인 흐름이 깨지며 발생하는 예측 오차를 줄이기 위해 이벤트 가중치를 적용하여 최종적으로 도로 속도를 예측한다. 다양한 성능 평가를 통해 제안된 방법의 우수성을 입증한다.
Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.
논지가 높은 설득력을 갖기 위해서는 충분한 지지 근거가 필요하다. 논지 내의 주장을 논리적으로 지지할 수 있는 근거 자료 추출의 자동화는 자동 토론 시스템, 정책 투표에 대한 의사 결정 보조 등 여러 어플리케이션의 개발 및 상용화를 위해 필수적으로 해결되어야 한다. 하지만 웹문서로부터 지지 근거를 추출하는 시스템을 위해서는 다음과 같은 두 가지 연구가 선행되어야 하고, 이는 높은 성능의 시스템 구현을 어렵게 한다: 1) 논지의 주제와 직접적인 관련성은 낮지만 지지 근거로 사용될 수 있는 정보를 확보하기 위한 넓은 검색 범위, 2) 수집한 정보 내에서 논지의 주장을 명확하게 지지할 수 있는 근거를 식별할 수 있는 인지 능력. 본 연구는 높은 정밀도와 확장 가능성을 가진 지지 근거 추출을 위해 다음과 같은 단계적 지지 근거 추출 시스템을 제안한다: 1) TF-IDF 유사도 기반 관련 문서 선별, 2) 의미적 유사도를 통한 지지 근거 1차 추출, 3) 신경망 분류기를 통한 지지 근거 2차 추출. 제안하는 시스템의 유효성을 검증하기 위해 사설 4008개 내의 주장에 대해 웹 상에 있는 845675개의 뉴스에서 지지 근거를 추출하는 실험을 수행하였다. 주장과 지지 근거를 주석한 정보에 대하여 성능 평가를 진행한 결과 본 연구에서 제안한 단계적 시스템은 1,2차 추출 과정에서 각각 0.41, 0.70의 정밀도를 보였다. 이후 시스템이 추출한 지지 근거를 분석하여, 논지에 대한 적절한 이해를 바탕으로 한 지지 근거 추출이 가능하다는 것을 확인하였다.
비간섭적 개별 전기 기기 부하 식별(NILM)은 단일 미터기에서 측정한 총 소비 전력을 사용하여 가정이나 회사에서 개별 전기 기기의 소비 전력과 사용 시간을 효율적으로 모니터링할 수 있는 방법이다. 본 논문에서는 스마트팜의 소비 전력 데이터 취득 시스템에서 LTE 모뎀을 통해 서버로 수집된 총 소비 전력량, 개별 전기 기기의 전력량을 HDF5 형태로 변환하고 NILM 분석을 수행하였다. NILM 분석은 오픈소스를 사용하여 잡음제거 오토인코더(Denoising Autoencoder), 장단기 메모리(Long Short-Term Memory), 게이트 순환 유닛(Gated Recurrent Unit), 시퀀스-투-포인트(sequence-to-point) 학습 방법을 사용하였다.
본 논문에서는 SNS에 게시된 글의 내용을 통해 사용자의 우울함을 검출하는 기계학습 기반 감성 분석 시스템을 제안한다. 게시한 글의 작성자가 기분을 파악하는 시스템을 구현하기 위해 먼저 감정 사전에서 우울한 감정의 단어와 그렇지 않은 감정과 관련된 단어를 목록화하였다. 그 후, SNS를 대표하는 서비스 중 하나인 트위터의 텍스트 자료에서 검색 키워드를 선정하고 크롤링을 시행하여 우울한 감정을 띤 문장 1297개와 그렇지 않은 문장 1032개로 이뤄진 학습 데이터셋을 구축하였다. 마지막으로 텍스트 기반 우울감 검출 목적에 가정 적합한 기계학습 모델을 찾기 위해 수집한 데이터셋을 바탕으로 순환신경망, 장단기메모리, 그리고 게이트 순환 유닛을 비교 평가하였고, 그 결과 GRU 모델이 다른 모델들보다 2~4%가량의 높은 92.2%의 정확도를 보임을 확인하였다. 이 연구 결과는 SNS상의 게시글을 토대로 사용자의 우울증을 예방하거나 치료를 유도하는 데 활용될 수 있을 것이다.
본 논문에서는 산업현장에서 통신 오류에도 불구하고 최대전력수요를 예측하는 방법을 소개한다. 최근 국내의 탈원전 정책으로 전력가격상승은 불가피하며, 이에 따른 전력수요 관리를 위한 전력사용량과 최대부하관리는 중요한 문제로 부상하고 있다. 이에 따라, 피크전력을 예측하고 관리하는 것이 중요하다. 하지만 실제 산업현장에서는 각종 설비 및 센서에서 발생하는 노이즈 등으로 인해 측정된 전력데이터의 손실 및 변조 등의 문제가 발생한다. 측정된 유효전력 데이터가 손실된 경우 정확한 값을 예측하기 어렵다. 이 연구는 측정된 유효전력 데이터가 손실될 경우 이상 징후와 결측값을 예측하고 수정하는 모델을 제시한다. 본 연구에 사용된 모델은 산업현장에서 통신 오류가 발생할 경우 최대 전력수요를 예측하는 데 유용할 것으로 예상한다.
Kim, KyungDeuk;Son, SuRak;Jeong, YiNa;Lee, ByungKwan
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.4123-4141
/
2019
Autonomous driving technology is divided into 0~5 levels. Of these, Level 5 is a fully autonomous vehicle that does not require a person to drive at all. The automobile industry has been trying to develop Level 5 to satisfy safety, but commercialization has not yet been achieved. In order to commercialize autonomous unmanned vehicles, there are several problems to be solved for driving safety. To solve one of these, this paper proposes 'A Deep Learning Part-diagnosis Platform(DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle' that diagnoses not only the parts of a vehicle and the sensors belonging to the parts, but also the influence upon other parts when a certain fault happens. The DLPP consists of an In-vehicle On-board gateway(IOG) and a Part Self-diagnosis Module(PSM). Though an existing vehicle gateway was used for the translation of messages happening in a vehicle, the IOG not only has the translation function of an existing gateway but also judges whether a fault happened in a sensor or parts by using a Loopback. The payloads which are used to judge a sensor as normal in the IOG is transferred to the PSM for self-diagnosis. The Part Self-diagnosis Module(PSM) diagnoses parts itself by using the payloads transferred from the IOG. Because the PSM is designed based on an LSTM algorithm, it diagnoses a vehicle's fault by considering the correlation between previous diagnosis result and current measured parts data.
Kim, Heejin;Min, Younjeong;Choi, Changhyuk;Choi, Byoungju
한국정보기술학회논문지
/
제16권12호
/
pp.127-137
/
2018
가축의 분만은 농가의 재산을 늘릴 수 있는 중요한 수단이므로 이를 관리하는 것은 농업 경영에 필수적인 항목이다. 특히 축우는 다른 가축에 비해 단가가 높고, 생산성 측면에서 농가의 소득과 밀접히 연관되어 있으며 축우의 42%는 밤에 분만이 이루어지고 있어 정확한 분만 예측은 더 중요하다고 할 수 있다. 그리하여 본 논문에서는 경구 투여용 센서를 통해 반추위 내의 심부 체온을 외부 환경의 간섭 없이 안정적으로 실시간 측정하고 이를 딥러닝에 적용함으로써 분만 시점을 예측하는 방법을 제안 하였고, 실제 축우를 대상으로 실험을 수행한 결과 실제 분만 시간 대비 평균 3시간 40분의 오차만 보여 기존 분만 예측 방법보다 정확하게 분만일을 예측하는 것을 확인하였다. 제안하는 방법을 통해 축우의 분만을 정확하게 예측하여 난산의 위험 없이 성공적으로 분만 하도록 도움을 줌으로써 농가의 경제적 피해를 절감할 수 있을 것으로 기대한다.
대화 문장 내 고유명사와 같은 개체명에 대한 인식 연구는 효율적 대화 정보 예측을 위한 가장 기본적이며 중요한 연구 분야이다. 목적 지향 대화 시스템에서 가장 주요한 부분은 대화 내 객체가 어떤 속성을 가지고 있느냐 하는 것을 인지하는 것이다. 개체명 인식모델은 대화 문장에 대하여 전처리, 단어 임베딩, 예측 단계를 통해 개체명 인식을 진행한다. 본 연구는 효율적인 대화 정보 예측을 위해 전처리 단계에서 사용자 정의 사전을 이용하고 단어 임베딩 단계에서 최적의 파라미터를 발견하는 것을 목표로 한다. 그리고 설계한 개체명 인식 모델을 실험하기 위해 생활 화학제품 분야를 선택하고 관련 도메인 내 목적 지향 대화 시스템에서 적용 할 수 있는 개체명 인식 모델을 구축하였다.
미세먼지에 대한 심각성이 사회적으로 대두됨에 따라 대중들은 미세먼지 예보에 대한 정보의 높은 신뢰성을 요구하고 있다. 이에 따라 다양한 신경망 알고리즘을 이용하여 미세먼지 예측을 위한 연구가 활발히 진행되고 있다. 본 논문에서는 미세먼지 예측을 위해 다양한 알고리즘으로 연구되고 있는 신경망 알고리즘들 중 대표적인 알고리즘들의 예측 성능 비교를 진행하였다. 신경망 알고리즘 중 DNN(deep neural network), RNN(recurrent neural network), LSTM(long short-term memory)을 이용하였으며, 하이퍼 파라미터 탐색을 이용하여 최적의 예측 모델을 설계하였다. 각 모델의 예측 성능 비교 분석 결과, 실제 값과 예측 값의 변화 추이는 전반적으로 좋은 성능을 보였다. RMSE와 정확도를 기준으로 한 분석에서는 DNN 예측 모델이 다른 예측 모델에 비해 예측 오차에 대한 안정성을 갖는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.