• 제목/요약/키워드: LS-DYNA

검색결과 438건 처리시간 0.028초

충돌성능 향상을 위한 Al 박육부재의 에너지흡수 제어특성 (The Energy Absorption Control Characteristics of Al Thin-walled Tubes for Crashworthiness Enhancement)

  • 양용준;김선규;양인영;심재기
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.81-87
    • /
    • 2008
  • In this study, concerns the crashworthiness of the widely used vehicle structure, square thin-walled tubes, which are excellent on the point of the energy absorbing capacity. An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by axial loading to develop the optimum structural members. The impact velocity was tested in the rage $4.698{\sim}8.2m/s$. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA. The solutions compared with results the impact collapse experiment. Here, the controller are introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. To predict and control the energy absorption, we designed it in consideration to the it's influence, height, thickness, wide ratio in this study. When the controller used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact axial crushing.

FSI 해석기법을 이용한 에어건 수중발파 응답해석 검증 (Verification of Underwater Blasting Response Analysis of Air Gun Using FSI Analysis Technique)

  • 이상갑;이재석;박지훈;정태영;이환수;박경훈
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.522-529
    • /
    • 2017
  • Air gun shock system is used as an alternative energy source as part of the attempt to overcome the restrictions of economical expense and environmental damage, etc., due to the use of explosives for the UNDerwater EXplosion (UNDEX) shock test. The objectivity of this study is to develop the simulation technique of air gun shock test for the design of model-scale one for the near field non-explosive UNDEX test through its verification with full-scale SERCEL shock test result. Underwater blasting response analysis of full-scale air gun shock test was carried out using highly advanced M&S (Modeling & Simulation) system of FSI (Fluid-Structure Interaction) analysis technique of LS-DYNA code, and was verified by comparing its shock characteristics and behaviors with the results of air gun shock test.

차량 충돌 시뮬레이션에 의한 강재 및 복합소재 교량용 방호울타리 성능 비교 (Performance Evaluation of Steel and Composite Safety Barrier for Bridge by Vehicle Crash Simulation)

  • 김승억;조판규;홍갑의;전신열
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.175-182
    • /
    • 2010
  • 본 연구에서는 복합소재 교량용 방호울타리를 개발하여 컴퓨터 시뮬레이션을 통해 강재 교량용 방호울타리와 복합소재교량용 방호울타리의 성능을 비교하였다. 구조적 강도 성능 측면에서, 복합소재 교량용 방호울타리의 경우 교량용 방호울타리의 변형이 17%로 감소하여 강재 교량용 방호울타리 보다 강도 성능이 우수하였다. 탑승자 보호 성능 측면에서, 복합소재 교량용 방호울타리는 THIV 47.1%, PHD 49.0%로 감소하여 강재 교량용 방호울타리 보다 탑승자 보호성능이 우수하였다. 충돌 후 차량의 거동 측면에서, 복합소재 교량용 방호울타리는 이탈속도가 증가하고 이탈각도가 감소하여 강재 교량용방호울타리 보다 충돌 후 차량의 거동이 우수하였다. 교량용 방호울타리의 비산 측면에서, 강재 및 복합소재 교량용 방호울타리는 비산이 발생하지 않았다.

빙 충돌에 대한 Mark III 멤브레인형 LNG CCS의 구조 안전성 평가 (Structural Safety Assessment of Mark III Membrane Type Liquid Natural Gas Cargo Containment System under Ice Collision)

  • 노인식;윤영민;박만재;오영택;김성찬
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.126-132
    • /
    • 2014
  • In this study, a method for analyzing the collision and interaction between ice bergy bits and a Mark III type liquid natural gas (LNG) carrier was considered, and the structural safety of a ship's hull and cargo containment system (CCS) was evaluated. In the analysis, a constitutive model implementing the strain rate dependant mechanical property was used to consider the typical material characteristics of ice rationally. A relatively simple and easy ice structure interaction analysis procedure, compared with the accurate but complicated FSI analysis scheme, was suggested. When the ice bergy bits collided with ship's side hull under the four assumed scenarios, the structural behaviors of the ship structure and LNG CCS were simulated by applying the suggested ice collision analysis procedure using the commercial hydro-code LS-DYNA. In addition, the effects of the shapes and colliding speed of the ice bergy bits on the ice-structure interaction and safety of the CCS were examined in detail.

공리적 설계를 이용한 모니터용 EPS 완충 포장 설계 시스템 개발 (Development of Design System for EPS Cushioning Package of Monitor Using Axiomatic Design)

  • 이정욱;하대율;이상우;임재문;박경진
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1644-1652
    • /
    • 2003
  • The monitor product is packed by cushioning materials because the monitor can be broken during transportation. However, the addition of the cushioning material increased the volume of the product. Therefore, it is required that the usage of cushioning material be minimized. In practice, design engineers have followed the ad hoc design with experiences of predecessors. Automation of the design process is very important for the reduction of engineering cost, and can be achieved by an excellent design process and software development. According to Axiomatic design, a design flow is defined and a software system is developed for automated design. At first, a basic model is defined. A user can modify the model from menus and design is carried out according to the input from the user. Finite element models are automatically generated based on the design. A nonlinear finite element analysis program called LS/DYNA3D is linked for the impact analysis. The process of Design of Experiments using orthogonal array is installed to minimize the maximum acceleration in drop test. Therefore, a new design can be proposed by the system. The program is designed according to the Independence Axiom of Axiomatic design. FRs and DPs of the software system are defined and decomposed by zigzagging process. Independent modules can be generated by analysis of the full design matrix and each module is coded as class in Object Oriented Programming (OOP). Design results are discussed.

승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용 (Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures)

  • 김승진;김형곤;이종수;강신일
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

해상풍력 삼각지주형 하부구조물의 충격손상방지용 고무펜더의 두께결정 방법 (Method for Determining Thickness of Rubber Fenders of a Tripod Type Offshore Wind Turbine Substructure)

  • 이강수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.490-496
    • /
    • 2012
  • 본 연구의 목적은 바지선에 의해 발생하는 해상풍력발전기의 충격손상을 최소화 시키기 위한 것이다. 충격해석은 상용유한요소해석 프로그램인 ANSYS LS-Dyna를 통하여 분석하였다. 바지선속을 변화시켜 다양한 상태의 하중케이스를 고려하였고 충격방지고무의 비선형성을 고려한 시간이력해석을 수행하였으며 변형률 에너지, 전체 변형량, 플라스틱 변형률, 내부충격에너지, 영구손상된 변형량 등을 검토하였다. 충격속도에 변화에 따른 영구변형을 확인한 후 자연고무, 복합고무, 네오프렌 등의 고무시험 물성치로부터 구한 Mooney-Rivlin 상수를 적용하여 적절한 충격방지고무의 두께를 제안하였다. 본 연구를 통하여 구조물의 두께와 충격방지고무의 두께비에 대한 경향을 파악할 수 있으며 구조물의 설계에 적용할 수 있다.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

속도변화에 따른 점용접된 모자형단면부재의 에너지흡수 특성 (Energy Absorption Characteristics for Spot Welded Hat-shaped Section Members at Various Velocities)

  • 심재기;차천석;양인영
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.114-120
    • /
    • 2006
  • Front-end side members of vehicles are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was undertaken to analyze the energy absorption characteristics of spot welded hat and double hat-shaped section members under the axial collapse. The experiments were performed with respect to the various collapse velocities. It was expected that para-closed sections would show collapse characteristics which be quite different from those of perfectly closed sections. The collapse velocities were selected as follows: the velocities in the hat-shaped section members were 0.00017m/sec, 0.017m/sec, 4.7m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec, and 7.3m/sec those in the double hat-shaped section members were 0.00017m/sec, 0.017m/sec, 6.5m/sec, 6.8m/sec, 7.2m/sec 7.3m/sec, and 7.9m/sec. In the program system presented in this study, an explicit finite element code, LS-DYNA3D, is adopted for simulating complicated collapse behavior of the hat and double hat-shaped section members under the same condition of the collapse test. The validity of simulation was confirmed by the comparison between the simulation result and the collapse experiment.