• Title/Summary/Keyword: LRFD규정

Search Result 33, Processing Time 0.026 seconds

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Response Modification Factors and No Collapse Design of Typical Bridges (응답수정계수와 일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.185-189
    • /
    • 2017
  • The purpose of earthquake resistant design for typical bridges is the 'No Collapse Design' allowing emergency vehicles just after earthquakes. The Roadway Bridge Design Code provides design provisions to carry out such 'No Collapse Design' with a ductile mechanism and response modification factors given for connections and substructure play key role in this procedure. In case of response modification factors for substructure, the Roadway Bridge Design Code provides values considering ductility and redundancy. On the other hand, 'AASHTO LRFD Bridge Design Specifications' provides values considering additionally an artificial factor according to the bridge importance categories divided into critical, essential and others. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and different response modification factors for substructure are applied with design conditions given in the Roadway Bridge Design Code. Based on the comparison study of the design results, supplementary measures are suggested required by applying different response modification factors for substructure.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.

Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge (연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구)

  • 신호상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.135-143
    • /
    • 1998
  • The wheel load distribution width for lane load is not specified in current Korea bridge design code(KD code), not like in current AASHTO and AASHTO LRFD specifications which specity it as twice of wheel load distribution width for wheel load. In this study, the wheel load distribution width in continuous reinforced concrete slab bridge is investigated. The major variables affecting the wheel load distribution of a reinforced concrete continuous slab bridge are the span length, bridge width, existence edge beam and boundary condition. From a series of comprehensive parametric study on each variable, the formula for wheel load distribution in continuous reinforced concrete slab bridge is proposed from the nonlinear regression analysis of finite element analysis results. The proposed formulas can be used efficiently in the accurate design of continuous reinforced concrete slab bridges.

A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners (수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구)

  • Lee, Myung Soo;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.503-512
    • /
    • 2010
  • In AASHTO LRFD (2007), a compact section is defined as a section in which no premature failure caused by local buckling of web and flange plate or later buckling occurs before the section reaches the plastic moment, Mp. The current AASHTO LRFD (2007) provides the compact section requirement by limiting the web slenderness only for webs without longitudinal stiffeners. The role of longitudinal stiffener is to increase the web buckling strength caused flexure. Although a web does not satisfy the compactness requirement without longitudinal stiffeners, the web buckling can be prevented by use of valid longitudinal stiffeners. Therefore, the web may be able to reach the plastic moment. However, the reason why a longitudinal stiffener may not be used to satisfy compactness requirement is not cleary explained in AASHTO LRFD (2007). In this study, the buckling and ultimate strength behaviors of stiffened webs subjected to bending are investigated through the linear buckling and nonlinear finite element analysis. It is found that steel plate girders having webs that do not satisfy the compactness requirement are able to reach the plastic moment if the longitudinal stiffeners have sufficient rigidities and are properly located. From a nonlinear regression analysis of the results, a new compactness requirement is suggested for webs stiffened with one longitudinal stiffener.

A Study on Flexural Ductility of Longitudinally Stiffened Plate Girders (수평보강재가 설치된 플레이트 거더의 휨 연성에 관한 연구)

  • Yoon, Dong Yong;Kim, Kyung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.643-653
    • /
    • 2007
  • The ultimate bending strength and flexural ductility performance of longitudinally stiffened plate girders fabricated with mild steel were investigated utilizing nonlinear incremental finite element analysis. AASHTO LRFD (2002) design specifications were reviewed for possible application of longitudinally stiffened plate girders as compact sections. In order to investigate compact section requirements for plate girders with longitudinal stiffeners in webs, a number of full-scale plate girders were modeled and analyzed up to the collapse under pure bending condition. It was found that the slenderness of sub panel of the webs, the stiffness of longitudinal stiffeners, and the slenderness of compression flanges are key parameters governing the flexural ductility of the plate girders. It was also found from finite element analysis that longitudinally stiffened plate girder sections can satisfy compact section requirements both in full plastic moment capacity and flexural ductility requirement. New design equations have been proposed for longitudinally stiffened plate girders to be treated as compact sections.

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

Interface Horizontal Shear Strength between UHPC Deck and Concrete Girder with Stirrups (스터럽을 이용한 UHPC 바닥판과 콘크리트 거더 연결부의 수평전단강도)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Yong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.164-168
    • /
    • 2012
  • The purpose of this experimental research was to evaluate interface shear requirements between UHPC deck and concrete girder with stirrups according to Korean Highway Bridge Design Code and AASHTO LRFD Bridge Design Specifications. The push-out tests are performed to analize the composite behavior in interface of connection. The test results were compared to the values of interface horizontal shear strength predicted by current codes. As the results, it was observed that the test results provided more conservative estimate for horizontal shear strength than the values by current codes equation.

Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder using HSB High Performance Steel in Positive Bending (HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비)

  • Choi, Dong Ho;Lim, Ji Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.205-217
    • /
    • 2014
  • In this study, flexural strength and ductility requirements of composite hybrid steel I-girder with its HSB(high performance steel for bridge) applied to tension flanges are examined in positive bending. In AASHTO LRFD specification, flexural strength and ductility requirements of composite I-girder in positive bending are specified in terms of plastic moment and plastic neutral axis that are derived from plastic behavior of conventional steel. However, plastic zone cannot be defined clearly from the stress-strain behavior of HSB unlike the behavior of conventional steel. Therefore, through idealized stress-strain curves of HSB, the plastic moment of composite hybrid steel I-girder with its HSB applied to tension flanges is defined by assuming the plastic zone of HSB. By using the consequences of numerical analysis regarding arbitrary cross-sections that have various dimensions, ductility requirements and flexural strength of composite hybrid I-girder with its HSB applied to tension flange are proposed.

Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone (패널영역의 변형을 고려한 강뼈대 구조물의 이산화 최적설계)

  • 박순응;박문호;권민호;장준호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.315-327
    • /
    • 2002
  • The main objective of this study is to develop an discrete optimization algorithm of plane steel frames with rigid using second-order-elastic-plastic hinge analysis which is considering panel zone. Conventional analyses of steel frame are usually tarried out without considering the effect of panel zone deformation on frame behavior The validity of this model is established by comparison without panel zone on joint models is analyzed numerically to demonstrate the importance of using realistic models in steel frame analysis. The objective function is taken as Weight of steel frames and the constraints we formulated based on AISC-LRFD(1994). The validity of the developed algorithm we demonstrate by comparing the result with those of SAP2000. The result of the study indicates that the optimal design algorithm considering of panel zone behavior more economic design than simple steel frame design methods.