• Title/Summary/Keyword: LRE-Injector

Search Result 28, Processing Time 0.019 seconds

Measurement of Spray Characteristic Parameters for Inquiry into Small LRE-Injector's Injection Performance (소형 액체로켓엔진 인젝터의 분사성능 고찰을 위한 분무특성 매개변수 측정)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.141-144
    • /
    • 2009
  • An injector plays an important role in the process of an efficient combustion in liquid-rocket engines (LRE). This paper is focused on the injection performance of a small LRE-injector by employing the spray characteristic parameters made up of the velocity, Sauter mean diameter, and turbulence intensity. An experimental investigation is carried out with the aid of a dual-mode phase Doppler anemometry (DPDA) according to the injection pressure variation and along transverse axis, spatially. The Weber number and Reynolds number are used to characterize the atomization and turbulence nature of injector spray.

  • PDF

A Study on the Spray Characteristics of Small LRE Injector through PIV and PDA Measurements (PIV 및 PDA 계측에 의한 소형 액체로켓엔진 인젝터의 분무특성 연구)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Park, Jeong;Kim, Sung-Cho;Choi, Jong-Wook;Jang, Ki-Won
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.63-67
    • /
    • 2006
  • Spray characteristics of an injector employed in mono-propellant hydrazine thrusters were investigated by PIV(particle image velocimetry) and PDA(phase Doppler anemometry) techniques. The instantaneous plane images captured by PIV measurement were examined in order to judge the pass-fail criteria of spray injection performance according to the specific pressure supplied. PDA technique was also applied to measure the velocity and droplet size of spray which were not obtainable by PIV measurement. The objective of this experimental study is the evaluation of the injector performance which may be utilized for the design of brand-new injector through the clear understanding of spray characteristics.

  • PDF

Microstructure of the Brazed Joint for LRE Injector (액체로켓엔진용 인젝터 접합부의 미세조직)

  • 남대근;홍석호;이병호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.87-89
    • /
    • 2004
  • Brazing is an indispensable manufacturing technology for liquid rocket engine. In this study, for LRE injector, stainless steel 316L was used of base metal and Ni based MBF-20 of insert metal. The brazing and diffusion was carried out under various conditions. There are solid phase and. residual liquid phase in the brazed joint. With increment of holding time, the amount of solid phase increased and the elements of base metal and insert metal compositionally graded. Boron diffused from insert metal came into base metal and made boride with Cr and Mo at the brazed joint of base metal and insert metal.

  • PDF

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

A Study on the Performance Evaluation of Dual Swirl Injectors (Dual Swirl 인젝터의 성능 평가에 관한 연구)

  • 김선진;정해승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

Combustion Stability Test of LRE Thrust Chamber using Artificial Perturbation Method (강제교란 방법을 이용한 액체로켓엔진 연소기의 연소안정성 시험)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.52-60
    • /
    • 2010
  • Combustion stability tests of 30 $ton_f$-class LRE thrust chamber with double swirl coaxial injector were carried out in domestic ground combustion test facility by means of artificial perturbation method. In these tests, thrust chambers with varying design factors like recess number of injector, baffle length, types of film cooling and chamber diameter were used and test results showed that these design factors are closely related with high frequency combustion stability. By using the oscillation decrement instead of the decay time in the combustion stability analysis of artificially perturbed LRE thrust chamber, it was confirmed that increment of damping factor results in the improvement of high frequency combustion stability of LRE thrust chamber.

Numerical Investigation for Spray Angles of Dual Swirl Injector (Dual Swirl 인젝터의 분산각에 관한 해석적 연구)

  • 정해승;김선진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.132-144
    • /
    • 2003
  • Numerical analysis of the spray angles of Dual swirl injector were investigated to obtain basic design data and to predict the combustion performance. Using the commercial thermal hydraulic program, discharge coefficients and spray angles were numerically analyzed with recess length, pressure drop, velocity ratio, mixture ratio and back hole length. Water was used as simulants for oxidizer and fuel, respectively to compare the experimental results. Swirl injectors were designed to inject oxidizer of 70.5g/s and fuel of 29.5g/s at the pressure drop of 1MPa and two recess lengths were considered. In addition, the effect of injector geometry coefficient and velocity ratio on the discharge coefficient was studied.

Injector Head Design of 170tonf UDMH-LOX Liquid Rocket Engine (추력 170톤급 UDMH-LOX 계열 액체로켓엔진의 인젝터 헤드 설계)

  • Lim, Seok-Hee;Gostsev, V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.207-210
    • /
    • 2006
  • Injector is one of the most important elements in Liquid rocket Engine design, and how to arrange these injectors on the head determines the engine performance. In this study, when the swirl injectors are used for the 1st designing of injector head of 170 tonf UDMH-LOX as the propellant of LRE, a distribution relation of the mass flow rate per unit area was calculated from the function of ${\Phi}$, which is related with the mass flow rate characteristics of swirl injector. And the combustion characteristics by circumferential axis were estimated using this relation under the consideration of combustion core and film cooling area.

  • PDF