• 제목/요약/키워드: LRB (Lead-Rubber Bearing)

검색결과 88건 처리시간 0.027초

건물용 납면진받침의 의존성 평가 실험 (Experimental Study on Dependent Characteristics of Lead Rubber Bearing for Buildings)

  • 정길영;박건록;하동호;김두훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.373-382
    • /
    • 2002
  • In this paper, the characteristic dependencies of LRB(lead rubber bearing) were studied by various prototype tests on LRB for buildings. The characteristics of LRB were dependent on displacements, repeated cycles, frequencies, vertical pressures and temperatures. The prototype test showed that the displacement was the most governing factor influencing on characteristics of LRB. The effective stiffness and equivalent damping of LRB were decreased with large displacement, and increased with high frequency. After the repeated cyclic test with 50 cycles, the effective stiffness and equivalent damping of LRB were reduced by approximately 20% compared with those of the 1$^{st}$ cycle. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness.s.

  • PDF

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

LRB 기초분리장치의 교량 내진효과 (Seismic Effect of LRB Base Isolator on Bridges)

  • 황의승
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.13-18
    • /
    • 1993
  • 본 논문의 목적은 LRB 기초분리장치가 설치된 교량의 내진효과를 해석하는 것이다. 기초분리방법은 지진력이 구조물에 전달되기 전에 그 영향을 최소화시키는 방법으로 현재 건물, 발전소, 교량 등의 구조물에 실용화되고 있다. 본 연구에서는 대표적인 기초분리장치인 Lead Rubber Bearing이 설치된 교량의 단순화된 모델을 개발하고 여러 크기의 LRB에 대하여 지진의 영향을 해석하였다. 단순화된 교량모델의 운동방정식을 Newmark ${\beta}$ 방법에 의해 시간이력해석을 수행하였다. 기초분리장치의 모델로는 이중선형성을 갖는 스프링을, 교각모델로는 비선형성 및 강성저하를 고려한 Q-HYST모델을 사용하였다. 해석예로 미국 네바다주에 소재한 Rose Creek 교량에 대한 남북방향 El Centro지진(1940)의 영향을 해석하였다. 상부구조 횡방향처짐, 교각연성 및 교각 밑면 전단력을 구하였다.

  • PDF

면진 LRB(Lead Rubber Bearing) 시스템의 유한요소 해석 및 설계 (Finite Element Analysis and Design of a Lead-Rubber-Bearing System for Seismic Isolation)

  • 송우진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.229-232
    • /
    • 1999
  • The seismic isolation technology has appeared to be increasingly necessary for highway brides LNG tank nuclear power plant and building structures in view of recent frequent earthquake vibrations in Korea. Also high-technology industries required effective seismic protection. The LRB(Lead Rubber Bearing) systen has been counted as the most effective way for seismic isolation which is now under development and widely used in industries. Hear the commercial FEM software for nonlinear analysis MARC has provided force-displacement curves on the rubber system. The analysis has been carried out about four cases ; 29.5mm and 59mm horizontal dislacements with/without a center hole. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test,

  • PDF

납-고무 베어링(LRB) 면진시스템을 적용한 원전주제어실의 진동대 실험 (Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using LRB (Lead Rubber Bearing))

  • 이경진;함경원;서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.429-436
    • /
    • 2005
  • In this study, we made two types of main control room floor systems (Type I, Type II) and several shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB(Lead Rubber Bearing). Both type showed large difference according to input earthquake signals, but showed little difference according to floor type. It is required to make LRB of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such LRB, it is recommended that consideration should be taken into account when applied to main control room of NPP.

  • PDF

LRB 교좌장치를 사용한 교량의 장대레일 축력안정성 평가 (Stability evaluation of CWR on the bridge with lead Rubber Bearing(LRB))

  • 양신추;윤철균;이진우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.787-792
    • /
    • 2004
  • LRB(Lead rubber bearing) has small resistance force against slowly acting loadings such as temporal and creep loadings vice versa large resistance force against rapid loadings such as earthquake and braking loadings. By those mechanical characteristics, it has the advantage to reduce longitudinal load acting on abutments and piers, and moreover to in1prove the running stability of train by restricting the behavior of bridge under the required level. In this study, a stability evaluation method of CWR on the bridge with LRB is presented. Several parametric studies are carried to investigate how LRB contributes to the improvement of CWR stability.

  • PDF

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing

  • Kim, Dookie;Oh, Ju;Do, Jeongyun;Park, Jinyoung
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.127-140
    • /
    • 2014
  • Laminated rubber bearing is very popular base isolation of earthquake engineering pertaining to the passive structural vibration control technologies. Rubber used in fabricating NRB and LRB can be easily attacked by various environmental factors such as oxygen, heat, light, dynamic strain, and organic liquids. Among these factors, this study carried out thermal aging test to investigate the effect of thermal aging on the mechanical properties of laminated rubber bearings in accelerated exposure condition of $70^{\circ}C$ temperature for 168 hours. The compressive-shear test was carried out to identify the variation of compressive and shear properties of the rubber bearings before and after thermal aging. In contrast to tensile strength and elongation tests, the hardness of rubber materials showed the increasing tendency dependent on exposure temperature and period. Based on the test results, the property changes of rubber bearing mainly aged by heat are quantitatively presented.

Blast fragility of base-isolated steel moment-resisting buildings

  • Dadkhah, Hamed;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.461-475
    • /
    • 2021
  • Strategic structures are a potential target of the growing terrorist attacks, so their performance under explosion hazard has been paid attention by researchers in the last years. In this regard, the aim of this study is to evaluate the blast-resistance performance of lead-rubber bearing (LRB) base isolation system based on a probabilistic framework while uncertainties related to the charge weight and standoff distance have been taken into account. A sensitivity analysis is first performed to show the effect of explosion uncertainty on the response of base-isolated buildings. The blast fragility curve is then developed for three base-isolated steel moment-resisting buildings with different heights of 4, 8 and 12 stories. The results of sensitivity analysis show that although LRB has the capability of reducing the peak response of buildings under explosion hazard, this control system may lead to increase in the peak response of buildings under some explosion scenarios. This shows the high importance of probabilistic-based assessment of isolated structures under explosion hazard. The blast fragility analysis shows effective performance of LRB in mitigating the probability of failure of buildings. Therefore, LRB can be introduced as effective control system for the protection of buildings from explosion hazard regarding uncertainty effect.

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.