• Title/Summary/Keyword: LRB(Lead Rubber Bearing)

Search Result 88, Processing Time 0.025 seconds

Inelastic Response Evaluation of Lead-Rubber Bearing Considering Heating Effect of Lead Core (납심의 온도상승효과를 고려한 납-고무받침(LRB)의 비탄성응답 평가)

  • Yang, Kwang-Kyu;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.311-318
    • /
    • 2016
  • The lead-rubber bearing (LRB) dissipates seismic energy through plastic deformation of lead core. Under large-displacement cyclic motion, the temperature increases in the lead core. The shear strength of a lead-rubber bearing is reduced due to the heating effect of the lead core. In this study, the seismic responses such as displacement increasing, shear strength and vertical stiffness degradations of LRB due to the heating effect are evaluated for design basis earthquake (DBE) and beyond design basis earthquake (150% DBE, 167% DBE, 200% DBE).

Mechanical Characterization of Lead-Rubber Bearing by Horizontal Shear Tests (수평 전단시험에 의한 납 삽입 적층고무베어링의 기계적 특성 평가)

  • 전영선;최인길;유문식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.1-10
    • /
    • 2001
  • In this study, the horizontal loading tests of 10ton and 200ton capacity of LRB(lead-rubber bearing) were performed for the evaluation of the dynamic properties of the LRB. It is noted from the test results that dynamic properties of the LRB are dependent on the loading frequency, vertical load and shear strain. A Slender bearing subjected to large deformation will tend to develop plastic hinges in the end regions of the lead plug which will cause the failure of the lead plug. It is recommended that the appropriate mechanical properties of LRB considering the level of structural response and input ground motion should be used in the design of base isolated structures.

  • PDF

Dynamic Property Evaluation of Control Equipment using Lead Rubber Bearing (납-고무베어링을 적용한 제어장비의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.341-348
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic property evaluation of control equipment using lead Lead Rubber Bearing. In this study, a base isolation test of seismic monitoring control cabinet with LRB(lead rubber bearing) was performed. The cabinet will be installed on access floor in MCR(main control room) of nuclear power plant. Details and dynamic characteristics of the access floor were considered in the construction of testing specimen. N-S component of El Centre earthquake was used as seismic input motion. Acceleration response spectrums in the top of cabinets showed that the first mode frequency of cabinet with LRB(lead rubber bearing) was shifted to 7.5 Hz in compared with 18Hz of cabinet without LRB and the maximum peak acceleration was reduced in a degree of22 percent from 2.35 g to 1.84 g

  • PDF

Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material (초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석)

  • Cho, Sung Gook;Park, Woong Ki;Yun, Sung Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.361-374
    • /
    • 2016
  • The material property of the rubber has been studied in order to improve the reliability of the finite element model of a lead rubber bearing (LRB) which is a typical base isolator. Rubber exhibits elastic behaviour even within the large strain range, unlike the general structural material, and has a hyper-elastic characteristics that shows non-linear relationship between load and deformation. This study represents the mechanical characteristics of the rubber by strain energy function in order to develop a finite element (FE) model of LRB. For the study, several strain energy functions were selected and mechanical properties of the rubber were estimated with the energy functions. A finite element model of LRB has been developed by using material properties of rubber and lead which were identified by stress tests. This study estimated the horizontal and vertical force-displacement relationship with the FE model. The adequacy of the FE model was validated by comparing the analytical results with the experimental data.

Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model (등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석)

  • Lee, Jin-Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

Dynamic Property Evaluation of Lead Rubber Bearing by Shear Loading (적층고무베어링의 동적 특성평가)

  • 이경진;김갑순;강태경;서용표;이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.367-372
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic properties and mechanical characteristics of the 10tonf-LRB(Lead-Rubber Bearing). Experimental studies were performed to obtain the hysteretic behavior, effective shear stiffness( $K_{eff}$), equivalent damping( $H_{eq}$ ), capacity of energy dissipation( $W_{D}$) of six 10tonf-LRB. Especially, in this study, the response of the LRB for high loading frequency(0.5Hz~3.0Hz) was estimated. The effective shear stiffness of the LRB decreases and the capacity of energy dissipation increases as the shear strain amplitude increases. But the shear behavior of the LRB is not affected sensitively by loading frequency.y.y.

  • PDF

An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio (납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구)

  • Choi, Jung-Ho;Kim, Woon-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.217-224
    • /
    • 2009
  • Many engineering researches are performed to ensuring structural safety from earthquake. In this study, the damping capacity of LRB(lead rubber bearing) with high lead-plug area ratio was examined by hysteresis loop from experiments. The displacement controlled tests were performed for 12 specimens designed in 2 types by lead-plug area ratio as main parameter. Each coupled specimens were tested by 3 times sinusoidal loads with different loading velocities. From the experimental results, LRB with high lead-plug area ratio has sufficient damping ratio for reducing horizontal seismic load to structures.

A Study on the Seismic Analysis of Bridge with Lead Rubber Bearing (LRB(Lead Rubber Bearing)가 설치된 교량의 지진해석 연구)

  • Huh, Young;Park, Jin-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.374-381
    • /
    • 2000
  • 본 논문에서는 지진 발생시, LRB가 설치된 교량의 시간이력 해석을 수행하였다 이를 위해 LRB의 비선형 거동특성을 Bi-linear로 모형화 하였으며, 기존의 방법인 등가선형으로 모형화된 해석결과와 비교하였다. 또한 LRB받침만 설치된 경우와, LRB받침과 일반탄성받침이 함께 사용된 경우를 해석하여, 받침이 혼합된 경우, 상시하중과 지진하중시 발생할 수 있는 문제점을 검토하였다. 4경간 연속교량에 적용된 해석결과를 보면, LRB만을 설치한 경우, Pot-Bearing만 설치된 경우에 .비해, 고유주기 상승과 이력감쇠에 의한 지진력의 감소와 함께, 지진력의 효과적인 분배를 볼 수 있었으며, 일반탄성받침과의 적절한 조합에 의해서도, 충분한 면진성능을 얻을 수 있었다. 또한 LRB의 등가선형 모델이 Bi-linear 모델에 비해 보수적인 해석결과를 나타내었다.

  • PDF

Effect of Bouc-Wen Model and Earthquake Characteristics for Responses of Seismically Isolated Nuclear Power Plant by Lead-Rubber Bearing (납-고무 받침에 의해 면진된 원전구조물의 응답에 대한 Bouc-Wen 모델 및 지진특성의 영향)

  • Song, Jong-Keol;Son, Min-Kyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2017
  • In order to modeling seismic isolation system such as lead-rubber bearing (LRB), bilinear model is widely used by many researchers. In general, an actual force-displacement relationship for LRB has a smooth hysteretic shape. So, Bouc-Wen model with smooth hysteretic shape represents more accurately actual hysteretic shape than bilinear model. In this study, seismic responses for seismically isolated nuclear power plant (NPP) with LRB modelled by Bouc-Wen and bilinear models are compared with those of NPP without seismic isolation system. To evaluate effect of earthquake characteristics for seismic responses of NPP isolated by LRB, 5 different site class earthquakes distinguished by Geomatrix 3rd Letter Site Classification and artificially generated earthquakes corresponding to standard design spectrum by Reg. Guide 1.60 are used as input earthquakes. From the seismic response results of seismically isolated NPP, it can be observed that maximum displacements of seismic isolation modelled by Bouc-Wen model are larger than those by bilinear model. Seismic responses of NPP with LRB is significantly reduced than those without LRB. This reduction effect for seismic responses of NPP subjected to Site A (rock) earthquakes is larger than that to Site E (soft soil) earthquakes.

Seismic Response of Apartment Building with Base Isolation System Consisting of Sliding-type Bearing and Lend Rubber Bearing (LRB와 슬라이딩베어링을 혼용한 면진시스템을 적용한 아파트 건물의 지진 응답)

  • Chun, Young-Soo;Yoon, Young-Ho;Whang, Ki-Tea;Chang, Kug-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.507-514
    • /
    • 2007
  • This paper summarizes the results of a research on the isolate effects and economical efficiencies of seismic isolation design compared with the existing earthquake-resistant design, and presents seismic performance of the base isolation system consisting of sliding-type bearing and lead rubber bearing (LRB) compared with that consisting of the LRB only. From the results of the research, it is verified that seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease of the floor acceleration. Also, from the point of view of reduction of story acceleration and base shear, the base isolation system consisting of sliding-type bearing and LRB is more effective than that with LRB only. In respect of economical efficiency, special care should be taken in using this method since costs which have to be paid in proportin to increased performance are high.