• 제목/요약/키워드: LQR actuator

검색결과 20건 처리시간 0.03초

Lateral vibration control of a low-speed maglev vehicle in cross winds

  • Yau, J.D.
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.263-283
    • /
    • 2012
  • This paper presents a framework of nonlinear dynamic analysis of a low-speed moving maglev (magnetically levitated) vehicle subjected to cross winds and controlled using a clipped-LQR actuator with time delay compensation. A four degrees-of-freedom (4-DOFs) maglev-vehicle equipped with an onboard PID (Proportional-Integral-Derivative) controller traveling over guideway girders was developed to regulate the electric current and control voltage. With this maglev-vehicle/guideway model, dynamic interaction analysis of a low-speed maglev vehicle with guideway girders was conducted using an iterative approach. Considering the time-delay issue of unsynchronized tuning forces in control process, a clipped-LQR actuator with time-delay compensation is developed to improve control effectiveness of lateral vibration of the running maglev vehicle in cross winds. Numerical simulations demonstrate that although the lateral response of the maglev vehicle moving in cross winds would be amplified significantly, the present clipped-LQR controller exhibits its control performance in suppressing the lateral vibration of the vehicle.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

교차곱항에 제어입력의 포화를 고려한 LQR 설계 및 자동차 능동 현가장치 제어에의 응용 (LQR Design Considering Control Input Saturation in Cross-Product Term and Its Application to an Automotive Active Suspension Control)

  • 서영봉;최재원
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.169-174
    • /
    • 1999
  • In this paper, the CLQR(Constrained LQR) controller, which considers the actuator saturation in a cross-product term of a given performance index for an automotive active suspension control has been proposed. The effects of actuator saturations have been reflected directly in the states by using the linear relation between the control input and states. The method proposed here is more effective and intuitive compared with the conventional schemes. The CLQR has been applied to designing an automotive active suspension control system to verify its effectiveness and practical aspects.

  • PDF

제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR (Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures)

  • 이상철
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.71-77
    • /
    • 2002
  • 본 논문에서는 강성 중앙동체에 끝단 질량을 갖는 두 개의 유연구조물이 부착되어 있는 구조 모델의 선회기동과 진동억제를 동시에 제어하는 문제를 고려하였다. 구조모델의 선형 운동방정식을 구하기 위해 유한요소법을 사용하였다. 우주구조물 모델의 LQR문제에 있어서 물리적 의미를 갖는 성능지수를 제공하는 간단한 방법을 제안하였다. 제안된 성능지수는 일반적으로 사용하는 에너지 형식의 성능지수와 비교할 때 수학적으로는 큰 차이가 없으나 물리적으로는 의미있는 차이를 갖는다. 특수해 방법을 사용하여 부등호 제어 제약조건이 있는 시변 LQR문제를 해결하는 수치적 절차를 소개하였다.

Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)

  • Mirfakhraei, Seyyed Farhad;Ahmadi, Hamid Reza;Chan, Ricky
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.229-240
    • /
    • 2020
  • In this research, toggled actuator forces were examined. For achieving to this object, an actuator was installed in a toggle pattern in a S.D.O.F frame and actuator forces were investigated thru a numerical analysis process. Within past twenty years, researchers tried to use strong bracing systems as well as huge dampers to stabilize tall buildings during intensive earthquakes. Eventually, utilizing of active control systems containing actuators to counter massive excitations in structures was emerged. However, the more powerful earthquake excitations, the more robust actuators were required to be installed in the system. Subsequently, the latter process made disadvantage to the active control system due to very high price of the robust actuators as well as their large demands for electricity. Therefore, through a numerical process (Part I), influence of toggled actuator pattern was investigated. The algorithm used in the system was LQR and ATmega328 was selected as a control platform. For comparison, active tendon control system was chosen. The final results show clearly that using the toggle pattern mitigates the required actuator forces enormously leading to deploy much lighter actuators.

엘리베이터 능동진동제어를 위한 동적 모델링 및 제어기 설계 (Dynamic Modeling and Controller Design for Active Vibration Control of Elevator)

  • 김기영;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.71-76
    • /
    • 2008
  • This paper is concerned with the active vibration control of elevator by means of the active roller guide. To this end, a dynamic model for the horizontal vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the equations of motion using the LQR theory and applied to the numerical model. Rail irregularity and wind pressure variation were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

  • PDF

열하중을 받는 패널플러터의 궤환 선형화에 의한 비선형제어 (Nonlinear Control by Feedback Linearization for Panel Flutter at Elevated Temperature)

  • 문성환;이광주
    • 한국항공우주학회지
    • /
    • 제34권9호
    • /
    • pp.45-52
    • /
    • 2006
  • 압전재료를 사용한 복합재료 패널의 플러터 억제 방법으로서 비선형 모델을 기반으로 하는 비선형 제어기법 중의 하나인 궤환 선형화에 의한 제어방법을 소개하였다. 기존의 패널 플러터 제어기에 대한 대부분의 연구들은 선형모델을 기반으로 설계된 선형2차제어기(LQR: Linear Quadratic Regulator)였음에 비해, 본 연구에서 제안한 비선형제어기는 시스템이 갖고 있는 비선형 특성들을 모두 고려해서 설계하였다. 압전 작동기로서는 PZT를 사용하였다. 가상변위의 원리와 4절점 사각형 요소를 사용하여 이산화된 비선형 운동방정식을 유도하였으며 제어기 설계를 위해 모달 변환을 통해 상태공간에서의 비선형 연계-모달 방정식으로 변환하였다. 본 논문에서 제안한 비선형 제어기에 의한 제어 결과와 선형모델을 기반으로 한 LQR 제어결과를 Newmark 수치적분법을 통해 시간영역에서 비교하였다.

Swing Up and Stabilization Control of the Pendubot

  • Yoo, Ki-Jeong;Yang, Dong-Hoon;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.71.4-71
    • /
    • 2001
  • This paper presents swing up and stabilization control of an underactuated two-link robot called the Pendubot. This device is a two-link planar robot with an actuator at the shoulder, but no actuator at the elbow. The controller swings up first link from its open loop stable equilibrium point to the unstable equilibrium point and then, catches the unactuated second link to balance it there. Two control algorithms are used for this task. Proportional Derivative Control technique is used to design the swing up control. The linear model of Pendubot is obtained by linearizing the nonlinear dynamic equations about the desired equilibrium point and LQR technique is used to design a stabilization controller.

  • PDF

능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구 (Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping)

  • 고성현;박현철;황운봉;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권3호
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구 (Vibration Control of Arc Type Shell using Active Constrained Layer Damping)

  • 고성현;박현철;박철휴;황운봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF