• Title/Summary/Keyword: LQ Controller

Search Result 148, Processing Time 0.025 seconds

Recent Developments in Japan Relevant to Structural Vibration Control

  • Seto, Kazuto
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.5-18
    • /
    • 1993
  • This paper reports the recent trends in active vibration control in Japan, especially, based on papers selected in the Proceedings of First International Conference on Motion and Vibration Control (1st MOVIC) held at Yokohama, Japan on Sept.7-11, 1992. Firstly, it classifiers vibration control methods and vibration controllers, especially active dynamic absorbers which are widely used in mechanical and civil engineering. Secondly, it covers basic problems in the control of vibration of flexible structures such as formulating a reduced-order model required for designing vibration controller, proper arranging of sensors and actuators, and preventing of spillover instability. Finally, the practical use of control theories such as LQ control theory, $H^{\infty}$ control theory, neural network theory, and other topics are discussed..

  • PDF

A Traction System Control Method for 2 Motor Driven Electric Vehicle (독립 구동형 전기자동차의 추진 시스템 제어 기법)

  • 박정우;하회두;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.357-367
    • /
    • 1999
  • When traction system of 2-motor driven electric vehicle(EV) is consisted of two motors (IPMSM) . two inverters. and one traction controller, control performances of IPMSM for an electric vehicle is affected by parameter variation b because of large current magnitude and wide current phase angle. To solve this problem, new parameter estimator for L Ld and Lq is constructed by neu때 network technique. And new vector control algorithm with parameter estimator by n neural network is proposed for IPMSM.And also. an advanced traction control algorithm is proposed using fuzzy c controller in order to enhance the driveability oftwo-wheel drive EVs with fitted with a traction control system Performances of the proposed algorithm are examined by simulations and the experimental resul않 with respect to t the prototype IPMSM and EV.

  • PDF

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

On the Full Stand Modeling and Tension Control for the Hot Strip Finishing Mill with PID Structure

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1062-1073
    • /
    • 2004
  • We describe a looper controller design for a hot strip finishing mill in steel plants. The main function of the looper system is to balance the mass flow of the strip by accumulating material in the middle of the stands. Another function is to control the strip tension which influences the width of the strip. To ensure strip quality, it is very important to control the tension of the hot strip finishing mill. However, because there is a mutual interaction between the looper angle and the strip tension, it is difficult to control the looper system. Previous researches examined only the operation of a single stand. But it is not sufficient to examine the operation and effect of whole stands because the operation is wholly interdependent. In this paper, we present a full model of the hot strip finishing mill in order to more effectively control strip tension. We propose several control methods for the full-stand hot strip finishing mill, denoted as conventional PI, PI with cross gain, and coefficient diagram method (CDM) PID control. In the real plants, there are some problems by using higher order controllers such as LQ, LQG and H$\_$$\infty$/. By comparison, the PID controller is very simple and easy to apply to all real plants. To that end, we present our findings on PID controls and their potential use in the hot strip finishing mill.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Choe, Gyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

Design of a Variable Stability Flight Control System

  • Park, Sung-Su;Ko, Joon-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.162-168
    • /
    • 2008
  • A design objective for variable stability flight control system is to develop a controller of in-flight simulation capability that forces the aircraft being flown to follow the dynamics of other aircraft. This paper presents a model-following variable stability control system (VSS) for in-flight simulation which consists of feedforward and feedback control laws, the aircraft dynamic model to be simulated, and switching and fader logics to reduce the transient effect between two aircraft dynamics. The separate design techniques for feedforward and feedback control law proposals are based on model matching and augmented linear quadratic (LQ) techniques. The system allows pilots to select and engage VSS mode, and when deselected, the aircraft reverts to the baseline flight control system. Both the baseline flight control laws and VSS control laws are computed continuously during flight. Initialization of the state values are necessary to prevent instability, since VSS control laws have integrators and filters in longitudinal, and lateral/directional axes. This paper demonstrates and validates the effectiveness and quality of VSS with F-16 models embedded in T-50 in-flight simulation aircraft.

A PI-type State Feedback Control of Seesaw System Using Reduced-order Observer (축소차수 관측기를 이용한 시소시스템의 Pl형 상태피드백 제어)

  • Ryu, Ki-Tak;Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;Kim, Jong-Su;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.853-858
    • /
    • 2007
  • In this paper, a seesaw system composed with a moving cart on the rail and seesaw frame is made to demonstrate the effectiveness of the control theory. The control aim is to maintain an equilibrium of seesaw frame in spite of various initial conditions and an allowable disturbance. To solve this control problem, a PI-type state feedback controller using reduced-order observer is implemented and applied to the seesaw system. The reduced-order observer can be used to estimate the state variables in the case of the limit of sensor number or the constraint on setting sensors and the cost. A series of simulation are carried out to verify the effectiveness of the control system.