• 제목/요약/키워드: LPS-PG

검색결과 78건 처리시간 0.022초

A Combination of PG490 and Lipopolysaccharide Induce Apoptosis through Activation of Casapase-3 and Downregulation of cIAP1 and XIAP in Human Astroglioma Cell

  • Lee, Tae-Jin;Woo, Kyung-Jin;Park, Jong-Wook;Kwon, Taeg-Kyu
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.99-104
    • /
    • 2005
  • Background: Malignant gliomas are the most common primary tumors in the central nervous system. Methods: We investigated the combined effect of PG490 and LPS on the induction of the apoptotic pathway in human astroglioma cells. Results: Treatment of U87 cells with combination of 50nM of PG490 and $50{\mu}g/ml$ of LPS resulted in increased internucleosomal DNA fragmentation, cleavage of PLC-${\gamma}1$, and downregulation of cIAP1 and XIAP. The combination of LPS and PG490 treatment-induced apoptosis is mediated through the activation of caspase, which is inhibited by the caspase inhibitor, z-VAD-fmk. Also, release of cytochrome c was found in PG490 and LPS-cotreated U87 cell. Conclusion: Taken together, combination of PG490 and LPS appears to be a potent inducer of apoptosis in astrogliaoma cells, and might have some benefit in the treatment of glioma patients.

Comparison of Cytokine Gene Induction in RAW 264.7 Cells by Porphyromonas gingivalis and Escherichia coli Lipopolysaccharide

  • Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.121-128
    • /
    • 2010
  • Porphyromonas gingivalis lipopolysaccharide (Pg LPS) is an important virulence factor in chronic periodontitis. The aim of this study was to compare the expression of inflammatory cytokine genes in Escherichia coli LPS (Ec LPS) and Pg LPS-stimulated mouse macrophage RAW 264.7 cells. Cells were treated with Ec LPS and Pg LPS for 18 hours, and the cytokine gene expression profile was assessed using microarrays and confirmed by real-time PCR. Microarray analysis showed that both types of LPS induced a significant increase in the expression of IL-$17{\beta}$, IL-2, Ccl4, Cxcl2 and $TNF{\alpha}$ compared with the control. However, LT-b was up-regulated by Pg LPS but not by Ec LPS. Real-time PCR analysis of these genes showed similar results for LT-b, Ccl4, Cxcl2, and TNF-$\alpha$ but found that IL-$17{\beta}$ and IL-2 were upregulated by Pg LPS but not by Ec LPS. These data indicate that Pg LPS stimulates the transcription of IL-$17{\beta}$, IL-2, Ccl4, Cxcl2, LT-b, and $TNF{\alpha}$, all of which may be involved in the pathogenesis of chronic periodontitis.

Bacterial Lipopolysaccharide가 Prostaglandin 합성에 미치는 작용의 특성 (Characteristics of Prostaglandin Synthesis Induced by Bacterial Lipopolysaccharide in Rat Alveolar Macrophages)

  • 이수환;임종석;황동호;문창규
    • 한국식품위생안전성학회지
    • /
    • 제8권4호
    • /
    • pp.181-188
    • /
    • 1993
  • It is well known that bacterial lipopolysaccharide (LPS) stimulates the prostaglandin (PG) synthesis in various experimental system, but the mechanism and the detailed nature of its action are yet to be understood. Thus, this study was designed to characterize LPS induced PG synthesis in rat alveolar macrophage. Although results were not so much prominent, LPS stimulated PGE2 synthesis in macrophage with short term exposure, and this was thought to be mainly due to the activation of phopholipase A2+ But there was a burst in the PG synthesis 6 hours after the LPS treatment and this was accompanied with the increase of cyclooxygenase activity. This effect was not mediated by tumor necrosis factor (TNF) or platelet activating factor (PAF), and the existence of serum was prerequisite for its action. Growth factors such as epidermal growth factor (EGF) and platelet derived growth factor (PDGF) themselves did not stimulate PG synthesis and the showed stimulatory activities to some extent. Normal rat serum was more effective for the elicitation of the LPS action than growth factors. Thus, considering the amounts of growth fafctors contained in normal serum, it was suggested that another factors like LPS binding protein (LBP) might be involved in the serum effect on LPS action. Conclusively. it was thought that LPS could stimulate PG synthesis through interaction with serum factors such as EGF, PDGF and/or LBP.

  • PDF

Oral squamous carcinoma cells stimulated by Porphyromonas gingivalis-derived lipopolysaccharide induce osteoclastogenesis through a paracrine mechanism

  • Bo Ram Keum;Soon Chul Heo;Hyung Joon Kim
    • International Journal of Oral Biology
    • /
    • 제49권3호
    • /
    • pp.79-86
    • /
    • 2024
  • Periodontal disease (PD) is strongly linked to increased risk of oral squamous cell carcinoma (OSCC); however, the specific mechanism through which the development of PD and OSCC is simultaneously promoted remains unclear. This study explored the impact of periodontal pathogens on OSCC progression and the contribution of periodontal pathogen-stimulated OSCC to PD development. The expression of osteoclastogenesis-inducing factors was assessed using quantitative reverse transcription polymerase chain reaction analysis following stimulation of OSCC with lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis (Pg), a pathogen commonly responsible for PD. The cell counting kit-8 assay was used to determine the effects of Pg-LPS on OSCC proliferation and drug resistance to cisplatin and 5-fluorouracil. The effects of conditioned medium (CM) derived from Pg-LPS-stimulated OSCC on osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining on bone marrow-derived macrophages (BMMs). Pg-LPS administration in SCC-25 and YD-8 OSCC cell lines induced a significant increase in receptor activator of nuclear factor kappa-B ligand mRNA expression; however, it did not affect cell proliferation. Treatment with CM derived from Pg-LPS-stimulated SCC-25 or YD-8 cells markedly enhanced the formation of TRAP-positive multinucleated cells during osteoclast differentiation of BMMs. Altogether, these findings demonstrate that Pg-LPS-stimulated OSCC promoted osteoclastogenesis through a paracrine mechanism.

바실러스균 발효황금약침액이 Lipopolysaccharide로 활성화된 마우스 대식세포의 인터루킨 생성에 미치는 영향 (The Effect of Bacillus-Fermented Scutellariae Radix Acupuncture Solution on Interleukin Production in Mouse Macrophage Stimulated by Lipopolysaccharide)

  • 박완수
    • Korean Journal of Acupuncture
    • /
    • 제27권2호
    • /
    • pp.95-105
    • /
    • 2010
  • Objectives : The purpose of this study is to investigate the effect of Bacillus-fermented Scutellariae Radix acupuncture solution (SB) on interleukin(IL) production in mouse macrophage stimulatedby lipopolysaccaride(LPS). Methods : Productions of interleukins were measured y High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$(multi-analyte profiling beads) technology. To begin with, cell culture supernatant was obtained after treatment with LPS(1 ${\mu}g/mL$) and SB for 24 hour. Then, it was incubated with the antibody-conj${\mu}g$ated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. After incubating for 30 minutes, Strepavidin-conjugated Phycoerythrin(SAPE) was then added. Incubating for another 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Results : The results of the experiment are as follows. SB significantly inhibited the LPS-induced production of IL-3($9.15{\pm}0.35$ pg/mL) by $6.92{\pm}0.05,\;7.21{\pm}0.11,\;6.96{\pm}0.33,\;and\;7.45{\pm}0.74$ pg/mL at the concentration of 25, 50, 100, and 200 ${\mu}g/mL$ in mouse macrophage RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced production of IL-5($7.30{\pm}0.48$ pg/mL) by $6.50{\pm}0.29,\;6.30{\pm}0.25,\;6.30{\pm}0.25,\;and\;5.80{\pm}0.25$ pg/mL at the concentration of 25, 50 100, and 200 ${\mg}g/mL$ in RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced productiion of IL-9($17.26{\pm}0.19$ pg/mL) by $15.01{\pm}0.43$ pg/mL at the concentration of 25 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced productioh of IL-13($187.80{\pm}2.90$ pg/mL) by $152.80{\pm}4.25,\;172.80{\pm}3.97,\;162.10{\pm}6.67,\;and\;165.30{\pm}11.80$ pg/mL at the concentration fo 25, 50, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-17($18.30{\pm}0.95$ pg/mL) by $13.30{\pm}1.25,\;13.80{\pm}1.11,\;13.30{\pm}0.75,\;and\;14.00{\pm}1.08$ pg/mL at the concentration of 25, 50 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-23($43.90{\pm}0.83$ pg/mL by $39.50{\pm}1.26,\;38.00{\pm}1.78,\;and\;39.60{\pm}2.49$ pg/mL at the concentration of 25, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). Conclusions : These results suggest that SB has anti-inflammatory activity related with its inhibition of IL-3, IL-5, IL-13, IL-17, and IL-23 production in macrophages.

Induction of Signal Transduction Pathway Genes in Dendritic Cells by Lipopolysaccharides from Porphyromonas gingivalis and Escherichia coli

  • Jin, Ho-Kyeong;Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.113-119
    • /
    • 2010
  • Porphyromonas (P.) gingivalis lipopolysaccharide (Pg LPS) is the major pathogenic component of periodontal disease. In this study, we have attempted to determine the expression profiles of the signal transduction pathway genes induced by Pg LPS in comparison with Escherichia (E.) coli LPS (Ec LPS). DC2.4 cells were treated for two hours with $1\;{\mu}g/ml$ of Pg LPS or $0.5\;{\mu}g/ml$ of Ec LPS. The total RNA from these cells was then isolated and reverse-transcribed. Gene expression profiles were then analyzed with a signal transduction pathway finder GEArray Q series kit and significant changes in expression were confirmed by real-time PCR. The microarray results indicated that several genes, including Tnfrsf10b, Vcam1, Scyb9, Trim25, Klk6, and Stra6 were upregulated in the DC2.4 cells in response to Pg LPS treatment, but were downregulated or unaffected by Ec LPS. Realtime PCR revealed that the expression of Trim25, Scyb9 and Tnfrsf10b was increased over the untreated control. Notably, Trim25 and Tnfrsf10b were more strongly induced by Pg LPS than by Ec LPS. These results provide greater insight into the signal transduction pathways that are altered by P. gingivalis LPS.

지질다당체와 펩티도글라이칸 공동 자극으로 유발되는 대식세포의 하이드로겐 퍼록사이드 생성증가에 미치는 바이칼레인의 작용 고찰 (Effects of baicalein on hydrogen peroxide productions in mouse macrophages stimulated by lipopolysaccharide and peptidoglycan)

  • 박완수
    • 대한본초학회지
    • /
    • 제38권6호
    • /
    • pp.45-52
    • /
    • 2023
  • Objectives : Effects of baicalein (BA) on oxidative stress in RAW 264.7 mouse macrophages stimulated with peptidoglycan (PG) and lipopolysaccharide (LPS) were investigated. Methods : RAW 264.7 co-stimulated with LPS and PG were incubated with BA at concentrations of 25 and 50 µM. Incubation time was 18 h, 20 h, 22 h, 24 h, and 26 h. After incubation, the production of hydrogen peroxide in RAW 264.7 was measured with dihydrorhodamine 123 assay. Additionally, RAW 264.7 stimulated with PG were incubated with BA at concentrations of 25 and 50 µM for 24 h. After incubation, NO production was evaluated by griess reagent assay. Results : BA significantly inhibited hydrogen peroxide productions (p <0.05). In details, production of hydrogen peroxide in 'LPS and PG'-stimulated RAW 264.7 treated for 18 h with BA at concentrations of 25 and 50 µM was 91.27% and 89.22% of the control group treated with LPS and PG only, respectively; the production of hydrogen peroxide for 20 h was 92.19% and 90.58%, respectively; production of hydrogen peroxide for 22 h was 91.69% and 89.89%, respectively; production of hydrogen peroxide for 24 h was 92.4% and 90.19%, respectively; production of hydrogen peroxide for 26 h was 91.7% and 89.04%, respectively. Additionally, BA at the concentration of 50 and 100 µM significantly inhibited NO production in PG-induced RAW 264.7 (p <0.05). Conclusions : BA might have anti-oxidative activity related to its inhibition of hydrogen peroxide production in 'LPS and PG'-stimulated RAW 264.7 macrophages.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과 (Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 이영경;김철환;정대원;이기원;오영택;김정일;정진우
    • 한국자원식물학회지
    • /
    • 제35권5호
    • /
    • pp.565-573
    • /
    • 2022
  • 치주조직에 존재하는 주요한 세포의 한 형태인 인체 치은섬유아세포는 다양한 구강유해세균으로부터 염증이 유발되어지며, 그중 대표적으로 치주염 원인균인 P. gingivalis의 내독소인 LPS-PG로부터 염증성 자극에 반응하여 다양한 염증매개 물질을 분비한다. 본 연구에서는 치주염을 일으키는 주요한 원인균 중 하나인 P. gingivalis로 부터 분리한 LPS-PG를 이용하여 인체 치은섬유아세포주인 HGF-1 세포에 염증을 유도한 후 LRE에 대한 항염증 및 항산화 효과를 분석하였다. 실험 결과, LRE는 LPS-PG 유도에 따라 iNOS에 의한 NO 생성과 COX-2에 의한 PGE2와 같은 염증 매개 인자의 발현 및 생성 억제와 함께 염증성 싸이토카인(TNF-α, IL-1β및 IL-6)의 생성 또한 억제하였다. 신호전달계에서 염증성 전사인자의 발현 경로를 확인하기 위하여 TLR4/Myd88/NF-κB의 활성을 확인한 결과, LRE 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 또한 산화 환원 효소로 항염증효과를 나타내는 것으로 알려진2상 효소 중 하나인 NQO-1과 이의 전사인자인 Nrf2를 분석 한 결과 LRE 처리에 의해 효소의 활성이 높아지는 것을 확인할 수 있었다. 결론적으로 LRE는 TLR4/Myd88/NF-κB 신호전달 경로를 억제하고 NQO1/Nrf2 활성을 유도함으로써 HGF-1 세포에서 LPS-PG에 의해 유도된 염증을 억제하는 것으로 사료되며, 향후 LRE는 식·의약품 소재 개발에서 치주질환 개선의 가능성이 있는 후보물질이 될 수 있을 것으로 사료된다.

Periodontopathogen LPSs Regulate MicroRNA Expression in Human Gingival Epithelial Cells

  • Lee, Hwa-Sun;Na, Hee-Sam;Jeong, So-Yeon;Jeong, Sung-Hee;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.109-116
    • /
    • 2011
  • Periodontitis results from the activation of host immune and inflammatory defense responses to subgingival plaque bacteria, most of which are gram-negative rods with lipopoly-saccharides (LPSs) in their cell walls. LPSs have been known to induce proinflammatory responses and recently it was reported also that they induce the expression of microRNAs (miRNAs) in host cells. In our current study therefore, we aimed to examine and compare the miRNA expression patterns induced by the LPSs of major periodontopathogens in the human gingival epithelial cell line, Ca9-22. The cells were treated with 1 ${\mu}g$/ml of E. coli (Ec) LPS or 5 ${\mu}g$/ml of an LPS preparations from four periodontopathogens Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Aggregatibacter actinomycetemcomitans (Aa), and Fusobacterium nucleatum (Fn) for 24 h. After small RNA extraction from the treated cells, miRNA microarray analysis was carried out and characteristic expression profiles were observed. Fn LPS most actively induced miRNAs related to inflammation, followed by Aa LPS, Pi LPS, and Ec LPS. In contrast, Pg LPS only weakly activated miRNAs related to inflammation. Among the miRNAs induced by each LPS, miR-875-3p, miR-449b, and miR-520d-3p were found to be commonly up-regulated by all five LPS preparations, although at different levels. When we further compared the miRNA expression patterns induced by each LPS, Ec LPS and Pi LPS were the most similar although Fn LPS and Aa LPS also induced a similar miRNA expression pattern. In contrast, the miRNA profile induced by Pg LPS was quite distinctive compared with the other bacteria. In conclusion, miR-875-3p, miR-449b, and miR-520d-3p miRNAs are potential targets for the diagnosis and treatment of periodontal inflammation induced by subgingival plaque biofilms. Furthermore, the observations in our current study provide new insights into the inflammatory miRNA response to periodontitis.