• Title/Summary/Keyword: LPS-MAPK pathway

Search Result 95, Processing Time 0.031 seconds

Anti-inflammation effect of rebaudioside A by inhibition of the MAPK and NF-κB signal pathway in RAW264.7 macrophage (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 억제를 통한 rebaudioside A의 항염 효과)

  • Choi, Da Hee;Cho, Uk Min;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.205-211
    • /
    • 2018
  • Rebaudioside A is a natural sweetener isolated from Stevia rebaudiana Bertoni, one of the glycosides based on steviol. Recent studies have shown that rebaudioside A inhibits the inflammatory response by inhibiting cytokines secretion such as interleukin-$1{\alpha}/1{\beta}$ in activated RAW264.7 mouse macrophage cells by LPS. However, the inhibitory mechanism of inflammation by rebaudioside A in the presence of LPS has not been fully elucidated. Therefore, in this study, we tried to investigate the anti-inflammatory activity of rebaudioside A at the protein level when RAW264.7 cells were stimulated by LPS. The inducible nitric oxide synthase protein expression level was reduced in the group treated with $250{\mu}M$ rebaudioside A compared to the LPS-treated group. In addition, the mRNA expression level of $NF-{\kappa}B$, which is a representative nuclear transcription factor by inflammatory signal, was also decreased as compared with that of LPS-treated group. In addition, $NF-{\kappa}B$ and inhibitor-${\kappa}B$ ($I-{\kappa}B$) complexes that are known to be dissociated by $I-{\kappa}B$ phosphorylation and ubiquitination were less phosphorylated than LPS treated group in the presence rebaudioside A. Finally, we could find that rebaudioside A was involved in the $NF-{\kappa}B$ pathway through reducing extracellular signal-regulated kinase1/2 phosphorylation in a concentration-dependent manner. These results suggest that rebaudioside A might suppress inflammatory reaction through MAPK and $NF-{\kappa}B$ regulation in LPS-stimulated RAW264.7.

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

The Inhibitory Effect of Picrasmae Lignum on Inflammatory Responses (고목(苦木)의 염증 반응 억제 효과)

  • Ryu, Ik-Han;Cho, Han-Baek;Kim, Song-Baeg;Seo, Yun-Jung;Choi, Chang-Min
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Picrasmae Lignum(PL). Methods: To evaluate the anti-inflammatory effects of PL extract, the productions of NO, PGE2 and expression of pro-inflammatory cytokine(IL-1b, IL-6 and TNF-a) were measured in LPS-induced RAW 264.7 cells. Furthermore Western blot analysis has been done to look into the inhibitory mechanisms such as MAPKs and NF-kB. Results: PL extract down-regulated LPS-induced NO, PGE2, IL-1b, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway and NF-kB pathway. Conclusions: These results suggest that PL extract may be effective for the treatment of inflammatory diseases.

Anti-inflammatory Effect of Leaves Extracts from Aralia cordata through Inhibition of NF-κB and MAPKs Signaling in LPS-stimulated RAW264.7 Cells

  • Ji, Eo Hyun;Kim, Da Som;Sim, Su Jin;Park, Gwang Hun;Song, Jeong Ho;Jeong, Jin Boo;Kim, Nahyun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.634-640
    • /
    • 2018
  • Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and $IL-{\beta}$ expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of $I{\kappa}B-{\alpha}$, which donated to the inhibition of p65 nuclear accumulation and $NF-{\kappa}B$ activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking $NF-{\kappa}B$ and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.

Butyrate Ameliorates Lipopolysaccharide-induced Myopathy through Inhibition of JNK Pathway and Improvement of Mitochondrial Function in C2C12 Cells (C2C12 세포에서 lipopolysaccharide에 의해 유도된 근육위축증에 대한 butyrate의 개선효과: JNK 신호전달 억제와 미토콘드리아의 기능 개선)

  • Pramod, Bahadur KC;Kang, Bong Seok;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.464-474
    • /
    • 2021
  • Inflammation induced by metabolic syndromes, cancers, injuries, and sepsis can alter cellular metabolism by reducing mitochondrial function via oxidative stress, thereby resulting in neuropathy and muscle atrophy. In this study, we investigated whether butyrate, a short chain fatty acid produced by gut microbiota, could prevent mitochondrial dysfunction and muscle atrophy induced by lipopolysaccharide (LPS) in the C2C12 cell line. LPS-activated MAPK signaling pathways increased the levels of the mitochondrial fission signal, p-DRP1 (Ser616), and the muscle atrophy marker, atrogin 1. Interestingly, butyrate significantly inhibited the phosphorylation of JNK and p38 and reduced the atrogin 1 level in LPS-treated C2C12 cells while increasing the phosphorylation of DRP1 (Ser637) and levels of mitofusin2, which are both mitochondrial fusion markers. Next, we investigated the effect of MAPK inhibitors, finding that butyrate had the same effect as JNK inhibition in C2C12 cells. Also, butyrate inhibited the LPS-induced expression of pyruvate dehydrogenase kinase 4 (PDK4), resulting in decreased PDHE1α phosphorylation and lactate production, suggesting that butyrate shifted glucose metabolism from aerobic glycolysis to oxidative phosphorylation. Finally, we found that these effects of butyrate on LPS-induced mitochondrial dysfunction were caused by its antioxidant effects. Thus, our findings demonstrate that butyrate prevents LPS-induced muscle atrophy by improving mitochondrial dynamics and metabolic stress via the inhibition of JNK phosphorylation. Consequently, butyrate could be used to improve LPS-induced mitochondrial dysfunction and myopathy in sepsis.

Anti-inflammatory Effects of Belamcanda Chinensis Water Extract (사간 물 추출물의 항염증 효과)

  • Park, Sung-Joo;Kim, Soo-Kon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.410-415
    • /
    • 2010
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

Chloroform Fraction of Zingiberis Rhizoma Recens Modulates the Production of Inflammatory Mediators in LPS-stimulated BV2 Microglial Cells (생강 클로로포름 분획의 활성화된 뇌신경교세포(腦神經膠細胞)에서 염증반응 억제효과)

  • Seo, Un-Kyo;Jung, Hyo-Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.73-83
    • /
    • 2008
  • Objectives : The root of Zingiber officinale ROSC. (Zingiberis Rhizoma Recens; Ginger) has been widely used as one of folk remedies and food materials in many traditional preparations. Ginger is known as an effective appetite enhancer and anti-inflammatory agent. This study was performed to investigate the effect of ginger chloroform fraction (GCF) in microglia which play a central role on brain inflammation in neurodegenerative diseases. Methods : Dried ginger was extracted with 80% methanol, and then fractionated with chloroform. BV2 mouse microglial cells were cultured with different concentrations of GCF and then stimulated with LPS (1 ${\mu}g/m{\ell}$) at indicated times. The cell toxicity of GCF was determined by MTT assay. The concentrations of NO, PGE2 and cytokines were measured by Griess assay and enzyme-linked immunosorbant assay. The mRNA and protein expressions of iNOS, COX-2 and cytokines were determined by RT-PCR and Western blotting. The phosphorylation of three MAPKs (p38 MAPK, ERK1/2 and JNK) and $NF-{\kappa}B$ activation were determined by Western blotting. Results : GCF significantly inhibited LPS-induced production of inflammatory mediators, NO, $PGE_2$ and proinflammatory cytokines ($TNF-{\alpha}$ and $IL-1{\beta}$) in a dose-dependent manner. GCF attenuated LPS-induced expression of mRNA and protein of inflammatory enzymes, iNOS, COX-2 and proinflammatory cytokines through suppressing the phosphorylation of ERK1/2 and p38 MAPK and the activation of p65 $NF-{\kappa}B$ in BV2 cells. Conclusions : This study suggests that GCF may have an anti-inflammatory property through suppressing the inflammatory mediator production released by activated microglia after the brain injury.

  • PDF

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.